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Who am I?

2018
Master in computer science

2021
Thesis in Deep Learning for 

SCA

From 2021-…
Security evaluator
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Agenda
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distinguishers
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Context

▌ Common Criteria for Information Technology Security Evaluation (or CC*)

International standard (ISO/IEC 15408) for computer security certification

Framework which helps developer for defining

- The Target of Evaluation (TOE)

- The security assets to protect (e.g. secret keys)

- The secure functions related to the TOE (e.g. secure communication, authentication process)

- The level of security assurance (EAL, Evaluation Assurance Level)

Different security levels

- EAL 1: This is the most basic level, focusing on functional testing to ensure the product performs as specified.

- EAL 2: This level involves more in-depth testing, including structural analysis of the product's components.

- EAL 3: It adds a methodical approach to testing and checking the product's security features.

- EAL 4: This level requires a more rigorous design process, along with thorough testing and review of the product's security.

- EAL 5: It introduces semi-formal methods for design and testing, increasing the level of assurance. 

- EAL 6: This level builds upon EAL5 with more formal verification techniques.

- EAL 7: It is the highest level of assurance, requiring formal verification of the product's design and security features.

Functional testing and 

structural verifications

+ security testing

(software attacks)

+ physical attacks

+ formal verifications

Who is responsible for making the evaluation process?

*

https://www.commoncriteriaportal.org/index.cfm
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Evaluation process

• Weaknesses: physical/logical
attacks

• Criticity level for each
weakness

• Security assets

• Threats

• Security function

• Hypothesis

• Evaluation Security Level

Company
Thales ITSEF

Security target

Analysis
• Documentary analysis

• Cryptographic analysis

• Audit code

Identification

• Test plan

• Exploitation of one or most
weaknesses

• Verdict

Exploitation

ANSSI EvaluationCertifies
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Physical attacks
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Physical attacks

Evaluates

Thales ITSEF

Invasive attacks

Semi-Invasive attacks

Non-Invasive attacks

Reverse ingineering / 
FIB probing routing

Temporarily / Permanently
perturbations
(fault attacks)

Side-channel attacksToday
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Side-channel Attacks
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Side-channel attacks

▌ Surveillance and Exploitation of an INVOLUNTARY leak from the system

Related to the communication protocol

Related to the implementation 

Related to the underlying hardware and physics 

▌ Common channels (not exhaustive)

Errors returned [SW] 

Computation time (duration, cache access time, etc.) [SW] 

Instantaneous current consumption (transistor switching) [HW] 

- 1 -> 1 or 0 -> 0 consumes less than 1 -> 0 or 0 -> 1 

Electromagnetic radiation [HW] 

Photon emissions, temperature, noise, etc. [HW] 

▌ Objective

Allows attacks on cryptographic algorithms (RSA, ECC, AES, DES, HASH...) to retrieve secret information (key, message)

Allows attacks on AI embedded systems to retrieve NN architecture, weight value.

Also helps to understand how the code works (reverse engineering)
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Side-channel attacks

▌ Historical example: Hagelin cipher machine

Context

- In 1956, Egyptian embassy used Hagelin cipher machine to protect communications.

Weakness

- The Hagelin machine used 7 wheels (or rotors), which were part of its cryptographic mechanism. 

- These wheels needed proper positioning to ensure the encryption and decryption were accurate.

- The Hagelin machine required periodic resetting or reinitialization of their settings, including the 

positions of the wheels.

Strategy (MI5)

- Peter Wright (MI5, Scientific expert and counterintelligence officer) proposes installing a 

microphone in the encryption room.

Acoustic channel

- Acoustic cryptanalysis is a known technique where sounds produced by mechanical operations 

can reveal information about the machine's state.

- The noise emitted during the initialization allowed MI5 to determine the position of the wheels 

during encryption process.

Result

- MI5 was be able to decrypt the secure communication of the Egyptian embassy.
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Side-channel attacks

▌ Short exercise: 3 switches, 3 light bulbs in another room 

Only one visit is possible 

Which switch turns on each light bulb?

1

2

3

A B C
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Side-channel attacks

▌ Short exercise: 3 switches, 3 light bulbs in another room 

Only one visit is possible 

Which switch turns on each light bulb?

1

2

3

A B C

ON 5min 

then OFF 

ON

OFF
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Side-channel attacks

▌ Scenario of this talk

Target of Evaluation: Embedded system

Security function: Password verification

Security asset: Password

Attack: side-channel attack

▌ Password verification process
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Side-channel attacks

▌ Password verification process

pwd 0 pwd 1 pwd 2 pwd 3𝑵 = 𝟏𝟔 … pwd 13 pwd 14 pwd 15

PWD∗ 0 PWD∗ 1 PWD∗ 2

= = ≠

▌ Hypotheses

No limit on the number of attempts

PWD∗ is stored in memory

Is brute-force possible?

Can we use side-channel attacks?
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Side-channel attacks

▌ Password verification process

▌ “Divide-and-conquer” strategy

pwd is validated byte per byte

Timing difference between the number of correctly verified bytes

▌ In practice

Assuming 𝑃𝑊𝐷∗ 𝑖 ≠ pwd[𝑖] operation takes ≈ 10 𝑚𝑠

Number of requests = 28 × 16 = 212 instead of 28 16 (brute-force)

Countermeasure?
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Side-channel attacks

▌ Password verification process

▌ Countermeasure?

Developing an algorithm which is not time-dependent
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Side-channel attacks

▌ Password verification process

pwd 0 pwd 1 pwd 2 pwd 3𝑵 = 𝟏𝟔 … pwd 13 pwd 14 pwd 15

PWD∗ 0 PWD∗ 1 PWD∗ 2

⊕ ⊕ ⊕

▌ Hypothesis

No limit on the number of attempts

PWD is stored in memory

Is brute-force possible?

Can we use side-channel attacks?

PWD∗ 3

⊕

…

⊕

PWD∗ 13

⊕

PWD∗ 14

⊕

PWD∗ 15

⊕
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Side-channel attacks

▌ Scenario of this talk

Target of Evaluation: Embedded system

Security function: Password verification

Security asset: Password

Attack: side-channel attack
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Side-channel attacks

The CPUs are here ☺

▌ Capture physical emanation

Source: Electromagnetic signal

Equipment: EM probe, oscilloscope, PC

▌ Step 1

Physical identification
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Side-channel attacks

▌ Capture physical emanation

Source: Electromagnetic signal

Equipment: EM probe, oscilloscope, PC

▌ Step 2

Setup preparation
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Side-channel attacks

▌ Capture physical emanation

Source: Electromagnetic signal

Equipment: EM probe, oscilloscope, PC

▌ Step 3

Signal acquisition
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Side-channel attacks

𝑳[𝑖] = 𝐻𝑊 pwd⊕ PWD∗

𝐻𝑊 pwd⊕ PWD∗

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝑳[𝑖] = 𝐻𝑊 pwd⊕ PWD∗ + 𝒁[𝑖]

▌ Leakage model 𝝍

A leakage model is a function𝜓:𝔽2
𝑛 → ℝ which characterizes a dependency between a pair (pwd, PWD∗) and the 

electromagnetic signal 𝑳

▌ Attacker’s goal

Retrieving the dependency between pwd and PWD in a minimum amount of physical traces. 

How can we identify such dependencies?
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Side-channel attacks

▌ Step 4: Signal analysis

A signal characterizes the process conducted by the password verification

𝒓𝒆𝒔 ← 𝟎𝒊 = 𝟎 𝒓𝒆𝒔 == 𝟎?𝒊 = 𝟏𝒊 = 𝟐𝒊 = 𝟑𝒊 = 𝟒𝒊 = 𝟓𝒊 = 𝟔𝒊 = 𝟕𝒊 = 𝟖𝒊 = 𝟗𝒊 = 𝟏𝟎𝒊 = 𝟏𝟏𝒊 = 𝟏𝟐𝒊 = 𝟏𝟑𝒊 = 𝟏𝟒𝒊 = 𝟏5

▌ Next step?

Which part of the signal is interesting for our study?

Should we consider all the time samples?

Do we need to restrict ourselves to a sub-portion of the signal?
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Side-channel attacks

▌ Issues

Lots of points in a physical signal are not dependent on the sensitive data.

How can you identify them?

▌ Step 5: Points of interest detection

𝑳 = 𝐻𝑊 pwd⊕ PWD∗ + 𝐙

𝑳 = 𝐻𝑊 pwd⊕PWD∗ + 𝐙

𝑳 = 𝐻𝑊 pwd⊕ PWD∗ + 𝐙

𝑳 = 𝐻𝑊 pwd⊕ PWD∗ + 𝐙

𝑳 = 𝐻𝑊 pwd⊕ PWD∗ + 𝐙

𝑺𝑵𝑹[𝑖] =
𝕍𝐩𝐰𝐝[𝔼 𝑳[𝑖] 𝐻𝑊(pwd⊕ PWD∗)

𝔼pwd[𝕍 𝑳[𝑖] 𝐻𝑊(pwd⊕ PWD∗)
=
𝕍p𝐰𝐝 𝐻𝑊(pwd⊕ PWD∗)

𝕍 𝒁[𝑖]

𝑆
𝑁
𝑅

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

~𝒩𝐷(0, Σ𝐷)

𝑺𝑵𝑹→ Allows the variability identification 
of 𝑝𝑤𝑑 on the signal

Other metrics can be used [BDHP21]

[BDHP21] It Started with Templates: The Future of Profiling in Side-Channel Analysis. Batina, L., et al. (2021). In: Avoine, G., Hernandez-Castro, J. (eds) Security of Ubiquitous Computing Systems.
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Side-channel attacks

▌ Issues

Lots of points in a physical signal are not dependent on the sensitive data.

How can you identify them?

▌ Step 5: Points of interest detection

𝑆
𝑁
𝑅

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑆
𝑁
𝑅

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

No depency with 𝐩𝐰𝐝 Dependencies with 𝐩𝐰𝐝

▌ Next step?

How can we exploit these points of interest (POIs)?
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Statistical distinguishers
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Statistical distinguishers

▌ Optimal attack: Maximum likelihood [HRG14]

Goal: retrieving information on PWD∗

Let denotes 𝑌 𝑖 = pwd 𝑖 ⊕ PWD∗ 𝑖

𝑳 = 𝐻𝑊 𝑌[0] + 𝐙

𝐩𝐰𝐝

𝐏𝐖𝐃∗

Pr 𝑌 0 𝐿

[HRG14] Good Is Not Good Enough – Deriving Optimal Distinguishers from Communication Theory. Heuser, A., et al. CHES 2014. 

0.10 0.08 … 0.16

0.25 0.38 … 0.18

0.05 0.28 … 0.08

෍log .−6.68 −4.77 … −6.07

Pr PWD∗ 0 𝐿, pwd 0

𝑷𝑾𝑫∗ 𝟎 = 𝟏

𝟐𝟓𝟔 classes

𝐩𝐰𝐝𝐩𝐰𝐝
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Statistical distinguishers
▌ Optimal attack: Maximum likelihood [HRG14]

Goal: retrieving information on PWD∗

Let denotes 𝑌 𝑖 = pwd 𝑖 ⊕ PWD∗ 𝑖

𝑳 = 𝐻𝑊 𝑌[1] + 𝐙

𝐩𝐰𝐝

𝐏𝐖𝐃∗

Pr 𝑌 1 𝐿

[HRG14] Good Is Not Good Enough – Deriving Optimal Distinguishers from Communication Theory. Heuser, A., et al. CHES 2014. 

0.20 0.18 … 0.46

0.05 0.08 … 0.38

0.09 0.28 … 0.18

෍log .−7.01 −5.51 … −3.46

Pr PWD∗ 1 𝐿, pwd 1

𝑷𝑾𝑫∗ 𝟏 = 𝟐𝟓𝟓

How can we estimate 𝐏𝐫 𝒀 𝑳 ?

Success Rate: Probability to succeed an attack within 𝑁𝑎 attack traces
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

Existing solutions

Generative model Discriminative model
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 1
𝐷
𝑖𝑚
𝑒𝑛
𝑠𝑖
𝑜
𝑛
2

▌ Generative approach

Estimation of Pr[𝐿|𝑌] to then deduce Pr[𝑌|𝐿] (Bayes’ 
theorem) 

Historical side-channel attacks [CRR03, SLP05]

▌ Discriminative approach

Estimation of Pr 𝑌 𝐿 via the approximation of a 
decision boundary

Approach using AI [MPP16, CDP17, MDP20]

[CRR03] Template attacks. Chari, S. et al. CHES 2003.
[SLP05] A stochastic model for differential side channel cryptanalysis. Schindler, W. et al. CHES 2005.
[MPP16] Breaking cryptographic implementations using deep learning techniques. Maghrebi, H. et al. SPACE 2016.
[CDP17] Convolutional neural networks with data augmentation against jitter-based countermeasures - profiling attacks without pre-processing. Cagli, E. et al. CHES 2017.
[MDP20] A comprehensive study of deep learning for side-channel analysis. Masure, L. et al. TCHES 2020.
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Generative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

Hypothesis

Template attack [CRR03]

Stochastic attack [SLP05]

[CRR03] Template attacks. Chari, S. et al. CHES 2003.
[SLP05] A stochastic model for differential side channel cryptanalysis. Schindler, W. et al. CHES 2005.
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Generative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

▌ Toy example

Goal: Approximating Pr 𝐿 𝑌

Hypothesis: 𝑌 ∈ {0,1}

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

Pr 𝐿 𝑌 = 1

Pr 𝐿 𝑌 = 0
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Generative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑃
𝑟𝑜
𝑏
𝑎
𝑏
𝑖𝑙
𝑖𝑡
𝑦
𝑑
𝑒𝑛
𝑠𝑖
𝑡𝑦

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

Pr 𝐿 𝑌 = 0

Pr 𝐿 𝑌 = 1
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Generative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑃
𝑟𝑜
𝑏
𝑎
𝑏
𝑖𝑙
𝑖𝑡
𝑦
𝑑
𝑒𝑛
𝑠𝑖
𝑡𝑦

Pr 𝐿 𝑌 = 0

Pr 𝐿 𝑌 = 1
▌ Steps

1) Acquire a set of 𝑁 traces such that 𝑌 is unknown

2) For each trace 𝑙𝑖, we calculate 𝑃𝑟[𝑙𝑖|𝑌 = 0] and 
𝑃𝑟[𝑙𝑖|𝑌 = 1]

3) We compute the Maximum likelihood:

෠𝑌 = argmax
𝑘∈ 0,1

෍

𝑖=0

𝑁−1

𝑙𝑜𝑔(Pr 𝑙𝑖 𝑌 = 𝑘 )
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Generative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

Benefits Limitations

Information on the exploitated POIs

Confident in the modeling of Pr 𝐿 𝑌

Multiple POIs can be exploited simultaneously

Strong hypothesis on the leakage model (Gaussian
hypothesis)

The success of attack performances depends on the 
POIs selection

How can we automate the process?
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

Generative Discriminative

Pr[𝐿|𝑌] Pr 𝑌 𝐿 = Pr 𝐿 𝑌 ×
Pr 𝑌

Pr 𝐿

Bayes’ theorem

Uniformly distributedConstant

Pr 𝑌 𝐿 = 𝜖 ⋅ Pr 𝐿 𝑌

Maximum likelihood

෠𝑌 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘∈ 0,1

෍

𝑖=0

𝑁−1

𝑙𝑜𝑔(Pr 𝑙𝑖 𝑌 = 𝑘 )
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

Existing solutions

Generative model Discriminative model



41

Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Discriminative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the discriminative methods approximate the conditional 
probability Pr 𝑌 𝐿

Pr 𝑌 = 0 𝐿

Pr 𝑌 = 1 𝐿

𝑳 = 𝐻𝑊 pwd⊕ PWD∗ + 𝒁

▌ Training process

Use of loss function to minimize with gradient descent (e.g. Negative Log-Likelihood)

Not detailed in this talk (see [MDP20])

[MDP20] A comprehensive study of deep learning for side-channel analysis. Masure, L. et al. TCHES 2020.
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Discriminative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the discriminative methods approximate the conditional 
probability Pr 𝑌 𝐿

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

▌ Toy example

Goal: Approximating Pr 𝑌 𝐿

Hypothesis: 𝑌 ∈ {0,1}

𝜃 ⋅ 𝐿
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Statistical distinguishers

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝑓Θ 𝐿 = ቊ
0 si 𝑔Θ 𝐿 < 0

1 si 𝑔Θ 𝐿 ≥ 0

𝐿[𝑗]

𝑔Θ 𝐿 = 𝑏 + ෍

𝑖=0

𝐷

Θ𝑖 ⋅ 𝐿 𝑖such that

𝑔Θ 𝐿∑

𝑔Θ 𝐿 = 𝑏 + Θ𝑗 ⋅ 𝐿 𝑗

𝜃 ⋅ 𝐿

0
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Discriminative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the discriminative methods approximate the conditional 
probability Pr 𝑌 𝐿

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝑌 = 0 𝑌 = 1
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Discriminative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the discriminative methods approximate the conditional 
probability Pr 𝑌 𝐿

▌ Steps

1) Acquire a set of 𝑁 traces such that 𝑌 is unknown

2) For each trace 𝑙𝑖, we calculate 𝑃𝑟[𝑌 = 0|𝑙𝑖] and 𝑃𝑟[𝑌 = 1|𝑙𝑖]

3) We compute the Maximum likelihood:

෠𝑌 = argmax
𝑘∈ 0,1

෍

𝑖=0

𝑁−1

𝑙𝑜𝑔(Pr 𝑌 = 𝑘 𝑙𝑖 )

𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒

𝑌 = 0 𝑌 = 1
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Statistical distinguishers

▌ Estimation of 𝐏𝐫[𝒀|𝑳]

Problem: 𝐏𝐫[𝒀|𝑳] is unknown and device-dependent

▌ Discriminative approach

Given a trace 𝐿 to which it must associate a sensitive variable 𝑌, the generative methods approximate the conditional probability 
Pr 𝐿 𝑌

Benefits Limitations

No hypothesis on the leakage model

All the tasks (e.g. POIs selection) are automatized

Multiple POIs can be exploited simultaneously

Neural networks can be seen as black-box tools

Construction of adequate statistical model
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Statistical distinguishers

Generative Discriminative

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

𝑌 = 0

𝑌 = 1

𝑇𝑖𝑚𝑒 𝑠𝑎𝑚𝑝𝑙𝑒

𝐴
𝑚
𝑝
𝑙𝑖
𝑡𝑢
𝑑
𝑒

Performance

All the tasks (e.g. POIs selection) are automatized

Strong hypothesis on the leakage model (Gaussian
hypothesis)

The success of attack performances depends on 
the POIs selection

Interpretability & Explainability

Confident in the modeling of Pr 𝐿 𝑌

Neural networks can be seen as black-box tools

Construction of adequate statistical model
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Countermeasures
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Countermeasures

▌ Desynchronization

pwd 5 pwd 8 pwd 10 pwd 0

𝑵 = 𝟏𝟔

… pwd 1 pwd 7 pwd 3

PWD∗ 5 PWD∗ 8 PWD∗ 10

⊕ ⊕ ⊕

PWD∗ 0

⊕

…

⊕

PWD∗ 1

⊕

PWD∗ 7

⊕

PWD∗ 3

⊕

5 8 10 0 … 1 7 3
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Countermeasures

▌ Desynchronization

Query 1 Query 2 Query 3

𝐻𝑊 pwd[5]⊕ PWD∗[5] + 𝐙 𝐻𝑊 pwd[2]⊕ PWD∗[2] + 𝐙 𝐻𝑊 pwd[14]⊕ PWD∗[14] + 𝐙
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Countermeasures

▌ Masking

Decomposition of a sensitive variable 𝑦 into 𝑦1, 𝑦2, … 𝑦𝑛 such that 𝑦1, 𝑦2, …, 𝑦𝑛−1 ← 𝒰 28
𝑛

and 𝑦𝑛 ← 𝑦 − (

)

𝑦1 + 𝑦2 +

⋯+ 𝑦𝑛

▌ Example

𝑚 is a 𝑁-byte random vector such that 𝑦1 = 𝑚 and 𝑦2 = 𝑦⊕𝑚 = pwd⊕ PWD∗⊕𝑚

𝑚 is refresh for each query

2 side-channel attacks are required

Estimation of Pr[𝑦1|𝐿]

Estimation of Pr[𝑦2|𝐿, 𝑦1]
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Personal recommendations

▌ Online courses

Amir Moradi’s course: 

▌ Books

▌ Public datasets:

ASCAD, AES_HD, AES_RD, DPA contest, …

▌ Open source Librairies: 

For side-channel attacks: SCALib – the Side-Channel Analysis 

Library: 

For deep learning: AISyLab’s framework - GitHub - AISY_Framework: 

Deep Learning-based Framework for Side-Channel Analysis

▌ International conferences

CHES, Cascade, Crypto, Eurocrypt, Asiacrypt, …

Side-channel attacks

▌ Online courses

Andrew NG’s course (Coursera): Machine Learning by Stanford 
University | Coursera, Deep Learning by deeplearning.ai | 
Coursera

▌ Books

▌ Open source Librairies: 

Tensorflow, PyTorch

▌ International conferences

NeurIPS, ICML, ECML-PKDD, CVPR, …

Machine-Learning

https://www.youtube.com/@AmirMoradi_impsec/playlists
https://www.wiley.com/en-fr/Embedded+Cryptography+1-p-9781789452136
https://www.wiley.com/en-us/Embedded+Cryptography+2-p-9781394351893
https://www.wiley.com/en-us/Embedded+Cryptography+3-p-9781394351923
https://scalib.readthedocs.io/
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Demonstration



Physical Attacks against 
Neural Networks

Benefits from an adversary’s viewpoint
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Evasion attack

❑ Could be difficult to consider in practice
❑ White-box scenario: knowledge of the IA architecture, weights, activation functions, etc…
❑ Black-box scenario: partial knowledge on the AI system (e.g., logits)

Practical issue: How can we generate adversarial examples without any knowledge on the device?

It’s a 7 !

It’s a 3 !

Adversarial examples, KESAKO ?
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It’s a 3 !

Evasion attack

Practical issue: How can we generate adversarial examples without any knowledge on the device?
Our idea : 

1) Extraction of the logits through the use of side-channel attacks
2) Use the state-of-the art adversarial attacks (e.g. ZOO*)

* ‘‘ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models’’, Chen et al., AISec '17 

It’s a 7 !

𝑍𝑂𝑂( + )
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Evasion attack

Device: ARM Cortex-M7 MCU on a 
STM32F767 board (216 MHz)

Embedded AI: a 8-bit quantized denseNET
(weights, activations, inputs) with NNOM* 
tool

Classification problem: 10 classes (MNIST)

Channel: Electromagnetic signal (EMV-
Technik RF-U 2,5 probe)

* GitHub - majianjia/nnom: A higher-level Neural Network library for microcontrollers.
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Evasion attack

It’s a 0

It’s a 1

It’s a 2

It’s a 3

It’s a 4

It’s a 5

It’s a 6

It’s a 7

It’s a 8

It’s a 9

S
o

ft
m

a
x

N
e

u
ra
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n

e
tw

o
rk

ProbabilityLogits
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Evasion attack

Targeted function: Softmax function

C code related to the softmax function

𝑙0 𝑙1 𝑙2 𝑙3 𝑙4 𝑙5 𝑙6 𝑙7 𝑙8 𝑙9

vec_in

𝑏𝑎𝑠𝑒 = 0𝑏𝑎𝑠𝑒 = 𝑙0𝑏𝑎𝑠𝑒 = 𝑙4𝑏𝑎𝑠𝑒 = 𝑙7
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Evasion attack

Targeted function: Softmax function

C code related to the  softmax function

Assembly code
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Evasion attack

Side-Channel attacks
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Evasion attack

Experimental results
• Profiled attack
• Black-box scenario (the attacker has no knowledge on the targeted AI)

Template

Logistic regression

Deep learning

Logits
We successfully extract all the logits within 5 traces
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Evasion attack
Practical issue: How can we generate adversarial examples without any knowledge on the 
device?
Our idea : 

1) Extraction of the logits through the use of side-channel attacks
2) Use the state-of-the art adversarial attacks (e.g. ZOO*)

* ‘‘ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models’’, Chen et al., AISec '17 

It’s a 7 !

x3

Logits
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Evasion attack

Generate an adversarial example
• Application of the Zeroth Order Optimization* (ZOO) method

Recap (ZOO)
Let 𝑿 ∈ ℝ𝒏 be an image and a wrong targeted class that an attacker wants to predict 𝑦∗ ∈ 𝒴, she
looks for an adversarial example 𝑋∗ ∈ ℝ𝑛 such that the following relation is satisfied:

𝑿∗ − 𝑿 2
2 + 𝑐 × 𝑔𝑜𝑏𝑗 𝑿

∗, 𝑦∗ ,

with 𝑔𝑜𝑏𝑗 𝑋
∗, 𝑦∗ = max max

𝑦≠𝑦∗
log 𝐹 𝑋∗ 𝑖 − log 𝐹 𝑋∗ 𝑦∗ , 0

* ‘‘ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute 
Models’’, Chen et al., AISec '17 

Original image Adversarial example

𝒚∗ = 𝟕 𝒚∗ = 𝟑
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Evasion attack
Practical issue: How can we generate adversarial examples without any knowledge on the 
device?
Our idea : 

1) Extraction of the logits through the use of side-channel attacks
2) Use the state-of-the art adversarial attacks (e.g. ZOO*)

* ‘‘ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks without Training Substitute Models’’, Chen et al., AISec '17 

𝑍𝑂𝑂( + )

It’s a 3 !
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Thank you

Contact: gabriel.zaid@thalesgroup.com


