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Introduction

Introduction: trustworthy AI

Main requirements on trustworthy AI:
Privacy and Right-to-Be-Forgotten (RTBF)
Security
Explainability
Fairness
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Introduction

Introduction: trustworthy AI and the law

EU: GDPR, EU AI Act.
USA: Under Biden, Executive Order 14110, revoked by
Trump’s Executive Order 14179.
China: The State is protected from AI rather than the citizens.

=⇒ The EU is the lone vigilante, but the weakest bloc in IT
technology.
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Introduction

Outline

We will focus here on:
Privacy attacks and defenses;
Security attacks and defenses;
The tensions between privacy and security defenses;
The real effectiveness of privacy attacks.
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Privacy and Security in Machine Learning: Attacks and Defenses
Privacy attacks against machine learning and federated learning

Privacy attacks against ML and federated learning

Centralized ML requires centralizing all training data =⇒ no
privacy vs model manager. What about external attackers?
Federated learning (FL) and fully decentralized machine
learning (FDML) provide scalability and some client privacy
against model managers.
Privacy problem: Model updates sent by clients may allow
inferences on their local data.

For a survey, see 1.

1A. Blanco-Justicia, J. Domingo-Ferrer, S. Martínez, D. Sánchez, A.
Flanagan, and K. E. Tan, “Achieving security and privacy in federated learning
systems: survey, research challenges and future directions”, Engineering
Applications of Artificial Intelligence, 106:104468, 2021.
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Privacy attacks against machine learning and federated learning

Federated learning
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Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
membership inference

Membership inference attacks (MIAs) aim to determine
whether a given data point was present in the training data
used to build a model.
Although this may not at first seem to pose a serious privacy
risk, the threat is clear in settings such as health analytics
where the distinction between case and control groups could
reveal an individual’s sensitive conditions.
In FL or FDML, MIA results in disclosure of the local data of
a client.
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Privacy and Security in Machine Learning: Attacks and Defenses
Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
attribute inference

In an attribute inference attack, the adversary uses a machine
learning model and incomplete information about a data point
to infer missing information.
For example, the adversary is given partial information about
an individual’s medical record and attempts to infer the
individual’s genotype by using a model trained on similar
medical records.
Can be obtained from successful MIAs.
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Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
reconstruction attacks

Reconstruction or model inversion attacks attempt to build
the whole training data set from the information leaked by the
trained model.
They can also be obtained from MIAs.
They often use generative adversarial networks (GANs).
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Privacy and Security in Machine Learning: Attacks and Defenses
Privacy attacks against machine learning and federated learning

More on privacy attacks against ML/FL/FDML:
relation to overfitting

Overfitting has been shown to predict the attacker’s
advantage (= max |tpr − fpr|).
In black-box attacks, prediction probabilities (for any
classifier) are used to determine membership.
Models, especially those overfit to the training data, behave
differently when confronted to previously seen data.
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Security attacks against machine learning and federated learning

Security attacks against ML and federated learning

♠ Untargeted poisoning: Byzantine attack that uploads
malicious gradient updates.

♠ Targeted poisoning:
Label-flipping attack. Flip labels of training
instances to enforce misclassification2.
Backdoor attack. Embed a pattern and set a
label in training instances3.

 

2N. Jebreel, J. Domingo-Ferrer, D. Sánchez, and A. Blanco-Justicia,
“LFighter: defending against the label-flipping attack in federated learning”,
Neural Networks, 170:111-126, 2024.

3N. Jebreel, J. Domingo-Ferrer and Y. Li, “Defending against backdoor
attacks by layer-wise feature analysis”, in PAKDD 2023 (Best Paper Award).
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Security attacks against machine learning and federated learning

More on security attacks: label flipping
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Security attacks against machine learning and federated learning

More on security attacks: backdoor attack
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Privacy and Security in Machine Learning: Attacks and Defenses
Security attacks against machine learning and federated learning

Conflict between security and privacy defenses

Conflict between security and privacy defenses

Security defenses are based on the model manager detecting
outlying updates or assessing model degradation (to protect
against poisoning).
Privacy defenses are based on the workers securely
aggregating their updates (via MPC) or adding noise to them
(via differential privacy, DP).
Limitation: Security defenses are based on the manager seeing
updates, whereas privacy defenses either prevent it (MPC) or
cause accuracy loss (DP). Security-privacy-accuracy conflict!
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Defenses: differential privacy

Differential privacy as a defense

(ϵ, δ)-Differential privacy [Dwork, 2006]
A randomized query function F gives (ϵ, δ)-differential privacy if,
for all data sets D1, D2 such that one can be obtained from the
other by modifying a single record, and all S ⊂ Range(F)

Pr(F(D1) ∈ S) ≤ exp(ϵ)× Pr(F(D2) ∈ S) + δ

Strong privacy guarantee for ϵ ≤ 1, independent of the
attacker’s background knowledge.
The DP condition is satisfied by adding noise to the query
output, inversely proportional to ϵ and directly proportional to
the sensitivity ∆f of query function f:

F(·) = f(·) + Noise(∆f, ϵ).
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Privacy and Security in Machine Learning: Attacks and Defenses
Defenses: differential privacy

Composability in DP

Sequential composition: if the outputs of queries κi, for
i = 1, . . . ,m, on non-independent data sets are individually
protected under ϵi-DP, then the output obtained by composing
all individual query outputs is protected under

∑m
i=1 ϵi.

Parallel composition: if m query outputs were computed on m
disjoint and independent data sets and protected under ϵ-DP,
then the composition of those outputs is still protected under
ϵ-DP.
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Defenses: differential privacy

On the privacy budget ϵ

As ϵ grows, the privacy guarantee fades away. Values of
ϵ = 8, 14 or more (as used by Apple or Google) are pointless.
Due to sequential composition, when m queries are to be
answered:

If each query is ϵ-DP, the set of m answers is just mϵ-DP
(privacy decreases with m).
If one wants the set of answers to stay ϵ-DP, then each query
answer must be ϵ/m-private (which means more noise per
query, and hence utility decreasing with m).
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Defenses: differential privacy

Fitting (or bending) DP for ML

DP is applied to gradients.
Since successive model training epochs are computed on the
same (or partly overlapping) data, ϵ grows with the number of
epochs due to sequential composition.
To deliver some privacy, the ϵ at each epoch must be very
small, which means a lot of noise.
This causes slower convergence and requires more epochs and
thus more noise (vicious circle!).
The final model is very inaccurate.
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Defenses: differential privacy

Strategies to reduce noise

Gradient truncation. Gradients are truncated to reduce their
sensitivity.
Prior subsampling. Gradients are computed on a random
sample of the private data.
Use relaxations of strict ϵ-DP, like (ϵ, δ)-DP, concentrated DP,
Rényi-DP, etc.
Bound the cumulative growth of ϵ across epochs using the
moments accountant method.
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Defenses: differential privacy

Applying DP to centralized ML

Applying DP to centralized ML

In centralized ML, learning is managed by a single entity.
The manager may protect privacy by applying DP to:

the input of learning (training data or objective function);
intermediate results (successive model updates); or
the output of learning (the learned model).
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Defenses: differential privacy

Applying DP to centralized ML

Literature on DP in centralized ML

ϵ are single-digit (thanks to moments accountant), often
exceeding 8 (not safe).
Attacker’s advantage upper-bounded by eϵ − 1.
δ is close or larger than 1/n, thus strict DP is not satisfied
with non-negligible probability.
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Defenses: differential privacy

Applying DP to decentralized ML

Applying DP to decentralized ML

1 Local DP. DP is applied locally by each client to obtain
instance-level privacy by:

adding DP-noise to the updates; or
using DP stochastic gradient descent during local training.

2 Central DP. The model manager hides the presence/absence
of any client (client-level privacy).

3 Withheld local model. The client does not reveal the model to
the manager, but collaborates in predictions (instance-level
and client-level privacy).
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Defenses: differential privacy

Applying DP to decentralized ML

Literature on DP in federated learning

ϵ values are too big to be safe.
If number of clients ≤ 1000, significant impact on accuracy.
For larger number of clients, no real privacy protection needed!
Non-i.i.d. data is a challenge.
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Defenses: differential privacy

Our empirical results

Our empirical results

We evaluated the trade-off between privacy protection against
membership inference attacks and test accuracy, using
anti-overfitting and DP.
Our results were computed for centralized ML, but they are
also valid for FL.
Data sets: Adult, MNIST, CIFAR10, CIFAR10-TL.
More details4.

4Alberto Blanco-Justicia, David Sánchez, Josep Domingo-Ferrer and
Krishnamurty Muralidhar, “A critical review on the use (and misuse) of
differential privacy in machine learning”, ACM Computing Surveys, vol. 55, no.
8, pp. 1-16, 2023.
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Our empirical results

Anti-overfitting: dropout
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Defenses: differential privacy

Our empirical results

Anti-overfitting: L2-regularization
Add a quadratic term to the loss function to penalize overfitting:

L2-regularization = (loss function) + λ

p∑
j=1

w2
j
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Defenses: differential privacy

Our empirical results

Our empirical results: anti-overfitting against MIA

Adult: 75% dropout and no L2-regularization reduce
attacker’s advantage by 35% and improve test accuracy.
MNIST: same parameters reduce advantage by 67% and
improve test accuracy.
CIFAR10: 25% dropout and L2-regularization improve test
accuracy by 4% and reduce advantage by 84%.
CIFAR10+transfer learning: 25% dropout and
L2-regularization reduce test accuracy by 1% and advantage
by 71%.
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Defenses: differential privacy

Our empirical results

Our empirical results: DP against MIA

Techniques: (ϵ, δ)-DP-SGD (stochastic gradient descent)
using moments accountant, with δ = 10−6, so that δ ≪ 1/n.
Various ϵ ranges: safe [0.1, 1], common in the literature [2, 8],
and weak [8, 1000]. Gradients clipped at maximum norm 2.5.
DP reduces attacker’s advantage for all ϵ, like anti-overfitting.
However, DP substantially reduces test accuracy much more
than anti-overfitting, even for weak ϵ.
Also, in DP-SGD it is hard to adjust hyperparameters to
achieve a certain specific ϵ.
Clipping gradients before noise addition eliminates the
performance of using GPUs for processing training data in
batches.
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Noiseless defenses for federated learning to achieve privacy & security

Noiseless alternatives for federated learning to achieve
privacy & security

If P2P communication between clients in federated learning is
possible, noiseless alternatives that provide exact updates are
possible:

Unlinkable updates;
Fragmented federated learning.

Noise-free updates have accuracy and security advantages
(bad updates can be detected).
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Noiseless defenses for federated learning to achieve privacy & security

Unlinkable updates

P2P communications enabling anonymous channels can be used to
break the relation between clients and their updates (unlinkable
updates):

Building a P2P anonymous channel via collaboration among
clients with reputation incentives5.
Using external infrastructures such as Tor for anonymous
communication or blockchain for incentives (no control on
those infrastructures!).

5J. Domingo-Ferrer, A. Blanco-Justicia, J. Manjón, and D. Sánchez,
“Secure and privacy-preserving federated learning via co-utility”, IEEE Internet
of Things Journal, 9(5):3988-4000, 2022.
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Noiseless defenses for federated learning to achieve privacy & security

Unlinkable updates (II)
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Noiseless defenses for federated learning to achieve privacy & security

Fragmented federated learning

1 Each client splits her update in random fragments.
2 Fragments are encrypted under the model manager’s key.
3 Workers exchange fragments.
4 The model manager receives all encrypted fragments and

decrypts them, but he does not know which fragment comes
from whom.

=⇒ Stronger privacy than unlinkable updates (full updates are not
visible), but poisoned fragments can still be detected6.

6N. Jebreel, J. Domingo-Ferrer, A. Blanco-Justicia, and D. Sánchez,
“Enhanced security and privacy via fragmented federated learning”, IEEE
Trans. on Neural Networks and Learning Systems 35(5):6703-6717, 2024.
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Noiseless defenses for federated learning to achieve privacy & security

Fragmented federated learning (II)

wk,1

wk,2

...

wk,|W|

wj,1

wj,2

...

wj,|W|

Participant k
update

Encrypt

Exchange
random

fragments
Decrypt

Server side

wj,1

wk,2

...

wk,|W|

wk,1

wj,2

...

wj,|W|

Median/ 
Trimmed

mean

Participants' side

w1

w2

...

w|W|

Aggregated
model

Participant j  
update
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How effective are privacy attacks?

How effective are privacy attacks?

We will examine:
Membership inference attacks (MIAs)
Property inference attacks
Reconstruction attacks
Special case: reconstructing unlearned data
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Privacy and Security in Machine Learning: Attacks and Defenses
How effective are privacy attacks?

Effectiveness of membership inference attacks

MIAs and disclosure risk

Identity disclosure, a.k.a. re-identification, associates a
released unidentified record with the subject to whom it
corresponds (typically via quasi-identifiers).
Attribute disclosure determines the value of a subject’s
confidential attribute.
Membership disclosure determines whether a record was part
of the training data (weakest form of disclosure).
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Effectiveness of membership inference attacks

Relationships between disclosure types

Identity disclosure and attribute disclosure can occur
independently from each other.
Membership disclosure might lead to attribute disclosure if all
individuals in a training data set share a confidential attribute
value (e.g., suffer from a certain disease).
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Effectiveness of membership inference attacks

Unequivocal attribute disclosure requires exhaustivity
(and thus trivial membership disclosure)

A necessary condition for unequivocal attribute disclosure is
that the training data be an exhaustive representation of a
population. Otherwise, there is plausible deniability.
But if the training data exhaustively represent a population
(e.g., country-level census), membership disclosure is trivial.
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Effectiveness of membership inference attacks

Unequivocal attribute disclosure requires uniqueness
and plausibility

Uniqueness of confidential attribute values: there should not
be two or more records in the training data that:

1 Match the target subject’s attribute values known to the
attacker;

2 Have different values for the confidential attribute the attacker
wishes to infer.

The information known by the attacker on the target subject
must be plausible.
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Effectiveness of membership inference attacks

Proposed evaluation framework for MIAs

C1: Non-overfitted
model

C2: Competitive
model

Effective MIA

C0: Sensitive
disclosure potential

C3: Reliable
membership inference

C4: Computationally
feasible

Dangerous MIA
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Effectiveness of membership inference attacks

C0: Sensitive disclosure potential

This is a precondition agnostic of the precise design of the MIA
(without C0, a MIA cannot succeed):

1 The training data must be an exhaustive sample of a
population;

2 The confidential attribute values must be unique;
3 The assumed attacker’s knowledge must be plausible.
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Effectiveness of membership inference attacks

C1: Non-overfitted model

MIAs can trivially distinguish between members and
non-members if a model is overfitted to (has memorized) the
training data.
For it to be effective, a MIA must succeed against
non-overfitted models, which are the desirable ones for
production.
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Effectiveness of membership inference attacks

C2: Competitive model

For it to be meaningful, a MIA must target a model that
could realistically be deployed in real-world applications and
thus be accessible to potential attackers.
We define a competitive model as one whose test accuracy
falls within an adaptive threshold w.r.t. the state-of-the-art
benchmark for its dataset and task.
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Effectiveness of membership inference attacks

C3: Reliable membership inference

1 A reliable MIA must achieve FPR near 0%.
2 The weighted precision

Prec =
p × TPR

p × TPR + (1 − p)× FPR

must be near perfect (≥ 95%): positive inferences must be
indeed true members, even for realistic low membership priors
p.
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Effectiveness of membership inference attacks

C4: Computational feasibility

A MIA must be executable within the practical constraints of
computational resources of potential attackers:

1 The number of required additional models (shadow, distilled,
or reference) must be small (ideally ≤ 1).

2 The cost of the inference model must be small (rules or simple
classifiers rather than deep neural networks).

3 The number of necessary queries per target sample must be
small (e.g. ≤ 100).
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Our interim assessment on MIA effectiveness

We reviewed the 13 MIA attacks in the literature, selected by
number of citations and top-tier venue7.
None of them satisfies C0.
None of them simultaneously satisfies C1, C2, C3, and C4.
For pre-trained LLMs, MIAs have been shown to be little
better than random guessing8.

7N. Jebreel, D. Sánchez, and J. Domingo-Ferrer, “A critical review on the
effectiveness and privacy threats of membership inference attacks” (submitted
manuscript, 2025).

8M. Duan, A. Suri, N. Mireshghallah, S. Min, W. Shi, L. Zettlemoyer, Y.
Tsvetkov, Y. Choi, D. Evans, and H. Hajishirzi, “Do membership inference
attacks work on large language models?”, 2024.
https://arxiv.org/abs/2402.07841
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The 13 evaluated attacks
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Effectiveness of membership inference attacks

C0: Results on disclosure potential

None of the training data sets were exhaustive.
Most of them contain public non-sensitive data (MNIST,
CIFAR-10, CIFAR-100, ImageNet-1k, CINIC-10, GTSRB,
RCV1X, and Newsgroups).
Uniqueness is not ensured.

48 / 55



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Privacy and Security in Machine Learning: Attacks and Defenses
How effective are privacy attacks?

Effectiveness of membership inference attacks

C1-C4: Overall results (I)
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C1-C4: Overall results (II)
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C1-C4: Overall results (III)
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On the effectiveness of other privacy attacks

Property inference attacks aim at inferring general properties
of the training data set.
They are more useful to audit fairness than to attack privacy.
Reconstruction attacks require:

A guess strategy based on MIAs (expensive);
Model inversion that requires access to gradients (only feasible
with white-box access or in federated/decentralized learning).

If reconstruction is not unique (several reconstructions are
compatible), then it is plausibly deniable.
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On the effectiveness of other privacy attacks

Special case: reconstructing unlearned data

In machine unlearning, a trained model is updated to cause it
to “forget” one or more data points, e.g. to implement the
RTBF, enforce copyright or mitigate bias.
If the trained model is simple, the unlearned data can be
reconstructed9.
The attack exploits the model updates to estimate the
unlearned point.
Still, determining success needs access to the ground truth,
unavailable in the real world.

9M. Bertran, S. Tang, M. Kearns, J. H. Morgenstern, A. Roth, and S. Z.
Wu. Reconstruction attacks on machine unlearning: Simple models are
vulnerable. In: Advances in Neural Information Processing Systems,
37:104995–105016, 2024.
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Conclusions

The EU is committed to trustworthy AI.
However, its enforcement must be based on a realistic
assessment of risks, to avoid unnecessarily hampering the
competitiveness of our industry.
Privacy defenses are expensive, they often conflict with
security defenses and they take a toll on accuracy.
The current state of the art tends to overstate the
effectiveness of privacy attacks.

54 / 55



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Privacy and Security in Machine Learning: Attacks and Defenses
Conclusions

Gràcies per la vostra atenció!

Merci pour votre attention!
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