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Refresher on Artificial 
Intelligence / Machine 

Learning
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Machine learning: from experience

source: underscore.vc
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Machine learning: from approximation
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Deep learning: deep neural network 

source: introtodeeplearning.com
z𝑘,𝑖 = 𝑤0,𝑖
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deep neural network’s hidden layer
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Deep learning: quantifying loss

𝐽(𝑊) = 1

𝑛
෍
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𝑛

𝐿(𝑓(𝑥(𝑖); 𝑊), 𝑦(𝑖))

predicted value

actual valuenumber of instances

weights matrix
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Deep learning: loss optimization

Objective: find optimal 𝑊∗ = argminW J(W)

1.Initialize weights randomly

2.Loop until convergence

1.Compute gradients

2.Update weights

3.Return weights

23



Deep learning: backpropagation 

Objective: compute gradient  
∂J(W)

∂W

e.g., 
∂J(W)
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Deep learning: gradient descent

W ← W− η
𝜕𝐽(𝑊)

𝜕𝑊

source: machinelearningmastery.com

learning rate
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Application to anomaly detection: 
AutoEncoders

RE = 
σ(ො𝑥𝑖 − 𝑥𝑖)

2
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Brief state of the art
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But ...
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Why?
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Generalization

• (Weak) assumption: training and test sets are independent and 
identically distributed (iid)

• Goal: generalize on previously unseen data 

• Solutions include regularization and cross-validation
source: Zhou et al., « Domain Generalization: A survey », IEEE Trans. on Patt. Anal. and ML, 2022 
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Overfitting

• (Weak) assumption: the more the data fits the model the more reduced 
loss is

• Goal: improve « signal to noise » ratio

• Solutions include regularization, cross-validation, feature selection
or data augmentation 

source: sourestdeeds.github.io
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Concept drift

• (Weak) assumption: data distribution is stationary

• but not all classes are represented uniformly across the training 
set

• Well-established features may exhibit gradual drifts (concept 
changes over time)

• Solutions include:
• Fine-tuning: to samples exhibiting changes on characteristics prone to 

change

• Transfer learning: fit trained models to new unlabeled traces

• Model extension: structure modification to accommodate new classes  
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Data Explanation
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Travaux Céline
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Data (or the lack of good 
traffic data)
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Representation

1. Traffic is captured from the data 
plane as pcap

2. A feature extractor extracts 
information to represent the traffic 
in a feature space
1. Packet-level

2. Payload-level

3. Flow-level

3. Representation may be further 
manipulated
1. Feature selection

2. Dimension reduction

3. Representation learning
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NIDS Datasets

• General information 
• year of collection

• scenario

• normal and attack traffic types

• Nature of data
• format

• number of features

• anonymized parts of the dataset

• Data volume
• size

• duration 

• Network properties
• network type

• complete capture

• Evaluation
• split

• labels

source: Goldschmidt et al., « Network Intrusion Datasets: A Survey, Limitations, and Recommendations », Computers & Security, 2025

Recent study surveyed 89 datasets
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Issues with Domain-Specific Properties

• Intra-network variability
• Computer networks are dynamic 

and change

• Adversarial environment
• Attacks attempts to bypass 

detection

• Inter-network variability
• Traffic patterns differ among 

networks

• High cost of errors
• Unable to balance true and 

false positives

• Uncertain ground truth & 
costly labeling

• Labeling network data is 
challenging

• Data confidentiality
• Real-world data might 

compromise privacy

source: Goldschmidt et al., « Network Intrusion Datasets: A Survey, Limitations, and Recommendations », Computers & Security, 2025

57



Datasets Limitations

source: Goldschmidt et al., « Network Intrusion Datasets: A Survey, Limitations, and Recommendations », Computers & Security, 2025
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Travaux Gabin
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Bayesian Network for Traffic Generation

• Focus on legitimate traffic 
generation: neglected !

• Advantages over GANs
• GANs struggle with feature 

dependencies and costly 
computation

• BNs are efficient, explainable, and 
handle conditional dependencies 

• Learning with BNs: structure 
learning and Conditional Probability 
Tables (CPTs)
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source: Schoen et al., « A Tale of Two Methods: Unveiling the limitations of GAN and the Rise of Bayesian Networks for 
Synthetic Network Traffic Generation »,WTMC, 2025



Addressing Challenges inherent to BNs

• Reducing Cardinality of Discrete Features
• CPT size grows polynomially

• Group public IPs and ephemeral ports (defined as outside the 30 most 
commons ports)

• Discretizing Numerical Features
• BNs require discrete variables

• Two strategies:

• Quantile discretization: Equal distribution

• VGM discretization: Gaussian component-based clustering

source: Schoen et al., « A Tale of Two Methods: Unveiling the limitations of GAN and the Rise of Bayesian Networks for 
Synthetic Network Traffic Generation »,WTMC, 2025



Synthetic traffic quality evaluation

• Realism: are synthetic flows sampled from the same distribution as the 
source flows?

• Ex: Contingency Matrix Difference (CMD), Pairwise Conditional Distribution (PCD) 

• Diversity: is the synthetic flows’ distribution of similar variance to the source 
ones’?

• Ex: Jensen-Shannon Divergence (JSD), Earth Mover’s Distance (EMD) 

• Novelty: are synthetic flows sufficiently different from source flows?
• Ex: Membership Disclosure (MD)

• Compliance: do synthetic flows conform well to protocol specifications?
• Ex: Domain Knowledge Check (DKC)
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source: Schoen et al., « A Tale of Two Methods: Unveiling the limitations of GAN and the Rise of Bayesian Networks for 
Synthetic Network Traffic Generation »,WTMC, 2025



Comparison with GAN-based approaches
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source: Schoen et al., « A Tale of Two Methods: Unveiling the limitations of GAN and the Rise of Bayesian Networks for 
Synthetic Network Traffic Generation »,WTMC, 2025
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FL-based Intrusion Detection System

source: Lavaur et al., « The evolution of federated learning-based intrusion detection and mitigation: A survey », IEEE Trans. on 
Net. and Serv. Mgmt, 2022 74



Collaborative Detection : Knowledge 
Sharing 

source: Chennoufi et al., « PROTEAN: Federated Intrusion Detection in Non-IID Environments through Prototype-Based 
Knowledge Sharing », ESORICS, 2025 75



Issues with FL-based IDS

• Knowledge sharing
• Sharing prototypes improves learning less-represented classes

• PROTEAN enables zero-shot learning

• Collaboration evaluation
• Unbalanced data distribution obtained using Dirichlet distribution

• Privacy risk
• Sharing prototypes does not significantly increase data leakage

• Byzantine resilience
• Label flipping affects classical aggregation algorithms

• What about FPL/PROTEAN?

source: Chennoufi et al., « PROTEAN: Federated Intrusion Detection in Non-IID Environments through Prototype-Based 
Knowledge Sharing », ESORICS, 2025 76



Avoid being detected
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Threats against ML Systems

Data poisoning, 
backdoor

Adversarial 
examples

Model theft,
Membership 
inference

source: Xue et al., « Machine learning security: Threats, countermeasures, and evaluations », IEEE Access, 2020 78



Evasion attacks: threat model and 
problem formulation

• Knowledge restriction
• White box

• Grey box

• Black box

• Attack objective
• Untargeted

• Targeted

Minimize:
D(x, x + δ)

Such that:

• C x + δ = 𝑡 (class constraint)

• x + δ ∈ [0, 1]𝑛 (validity 
constraint)
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Evasion: feature-space attacks

source: Pierazzi et al., « Intriguing properties of 
adversarial ML attacks in the problem space », 

IEEE Symposium on Security and Privacy, 2020
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Properties of adversarial examples

• Perturbations
• What features, amount of noise, distance from unperturbed sample

• Domain constraints
• Syntactic constraints (according to specifications, to types, to 

exclusiveness (e.g., 1-hot encoding))

• Semantic links, i.e., dependency between features (computed from one 
or several features, across one or many samples)

• Manipulation space
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Are adversarial examples against NIDS 
practical?

source: Merzouk et al., « Investigating the practicality of adversarial evasion attacks on network 
intrusion detection », Annals of Telecommunications 77 (11), 2022
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Feature space vs. Problem space

source: Pierazzi et al., « Intriguing properties of 
adversarial ML attacks in the problem space », 

IEEE Symposium on Security and Privacy, 2020
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Inverse feature-mapping problem

source: Pierazzi et al., « Intriguing properties of 
adversarial ML attacks in the problem space », 

IEEE Symposium on Security and Privacy, 2020
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Problem-space constraints

• Find the sequence of valid transformations T such that an object
z of label y is misclassifed as t i.e., we want to transform z to:

z’ = T(z)
such that φ(z ) = x + δ and z’ is valid and realistic

• Available transformations (T): which modifications can be performed in the 
problem space

• Preserved semantics (Υ): while mutating z to z’ , wrt specific features 
abstractions which the attacker aims to be resilient against

• Plausibility (Π): (qualitative) properties must be preserved in mutating z to 
z’, so that z’ appears realistic upon manual inspection

• Robustness to preprocessing (Λ): determines which non-ML techniques 
could disrupt the attack
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Problem-space attack: image domain

• Threat model: perfect knowledge on a DL-based image (pixels) 
classifier

• T: modification of pixel values (integer between 0 and 255) 

• Υ: constrained perturbation to prevent image from becoming an 
image from another class

• Π: none explicitly considered (back in 2017)

• Λ: constrained perturbation to prevent changes from being 
perceptible to a human

• Search strategy: gradient-driven with no side effects 

source: Carlini et Wagner, « Towards evaluating the robustness of neural networks », S&P, 2017 86



Problem-space attack: code domain

• Threat model: zero knowledge on any static analysis features 
(AST, PDG, CFG) classifier

• Τ: transplantation of semantically-equivalent benign ASTs 

• Υ: preservation of malicious semantics by construction (AST-
based transplantation)

• Π: robust to removal of function/variable name inconsistencies

• Λ: by construction if no obsolete objects are used

• Search strategy: problem-driven (search of sub-AST graphs in 
benigh samples); side effects are incurred

source: Fass et al., « HideNoSeek: Camouflaging Malicious JavaScript in Benign ASTs », ACM CCS, 2019 87



XAI-driven Black-box Attack

1. Analyze the target’s model decisions, in part. negatives, with 
KernelSHAP

2. Select k most important features, which are problem-space 
compliant

3. Plot true positives and negatives in the k-dimensional space

4. Validate features after computing a correlation heatmap

5. Chose candidate features to perturb

6. Implement perturbations in the problem space
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XAI-driven Attack Use Case: XSS

source: Okada et al., « XAI-driven black-box 
adversarial attacks on network intrusion
detectors », Intl Journal of Inf. Sec., 2025 89



XAI-driven Attack Use Case: XSS

source: Okada et al., « XAI-driven black-box adversarial attacks on network intrusion detectors », 
Intl Journal of Inf. Sec., 2025
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Evasion defenses

• Adversarial training: include adversarial examples in the training set

• Obfuscated gradients: disrupt gradient-descent by masking 

• Defensive distillation: transfer knowledge to a new NN which is trained 
with probability vectors as output instead of class labels

• Feature squeezing: reduce dimensionality by filtering unnecessary features

• Feature removal: remove most vulnerable features

• Adversarial detection: estimate density estimations (for example, on the 
last layer) compared to the training set of a class (e.g., benign)

• Adversarial query detection: detect the similarity among a group of 
queries

source: Debicha et al., « Review on the feasibility of adversarial evasion attacks and defenses for network intrusion detection 
systems », arXiv, 2023 91



Practical
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Need to work in « real time » and « real 
environment »

• Real time meaning ?

• How many flows / second ?
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Custocy models

94



95



96



97



98



99



Conclusion
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Appendices



Deep learning: the perceptron 

source: introtodeeplearning.com

ොy = g(𝑤0 + ෍

𝑗=1

𝑚

𝑥𝑗𝑤𝑗)

single neuron computation

ොy = g(𝑤0 + 𝑋𝑇W)

matrix notation
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Deep learning: the perceptron 

source: introtodeeplearning.com

z = 𝑤0 + ෍

𝑗=1

𝑚

𝑥𝑗𝑤𝑗

simplified input vector
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Deep learning: multi-output perceptron 

source: introtodeeplearning.com

z𝑖 = 𝑤0,𝑖 + ෍

𝑗=1

𝑚

𝑥𝑗𝑤𝑗,𝑖

multi-output perceptron
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Deep learning: hidden layers 

source: introtodeeplearning.com

z𝑖 = 𝑤0,𝑖
(1)

+ ෍

𝑗=1

𝑚
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(1)

hidden layer

single neural network’s final output

ොy𝑖 = g(𝑤0,𝑖
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