ML-based Network Intrusion Detection: What can be done in practice?

Cédric Lefebvre (Custocy) Gregory Blanc (Télécom SudParis, Institut Polytechnique de Paris)

Cyber in Occitanie, 8 July 2025, Font-Romeu

A network attack

Une attaque sur un réseau d'entreprise

Un référentiel?

https://attack.mitre.org/

Name	Description
Reconnaissance	The adversary is trying to gather information they can use to plan future operations.
Resource Development	The adversary is trying to establish resources they can use to support operations.
Initial Access	The adversary is trying to get into your network.
Execution	The adversary is trying to run malicious code.
Persistence	The adversary is trying to maintain their footbold.
Privilege Escalation	The adversary is trying to gain higher-level permissions.
Defense Evasion	The adversary is trying to avoid being detected.
Credential Access	The adversary is trying to steal account names and passwords.

Discovery	The adversary is trying to figure out your environment.
Lateral Movement	The adversary is trying to move through your environment.
Collection	The adversary is trying to gather data of interest to their goal.
Command and Control	The adversary is trying to communicate with compromised systems to control them.
Exhitration	The adversary is trying to steal data.
Impact	The adversary is trying to manipulate, interrupt, or destroy your systems and data.

Pourquoi regarder le réseau?

Discovery	The adversary is trying to figure out your environment.
Lateral Movement	The adversary is trying to move through your environment.
Collection	The adversary is trying to gather data of interest to their goal.
Command and Control	The adversary is trying to communicate with compromised systems to control them.
Exfiltration	The adversary is trying to steal data.

Cas concret d'une attaque

.001

Remote Services: Remote Desktop Protocol During the SolarWinds Compromise, APT29 used RDP sessions from public-facing systems to internal servers.

[5]

Application Layer

Protocol: Web

Protocols

During the SolarWinds Compromise, APT29 used HTTP for C2 and data exfiltration.^[4]

Comment détecter sur le réseau?

Problème, c'est chiffré

Les méta-données

Caractéristiques visibles

La volumétrie

Les protocoles applicatifs utilisés La taille et le temps entre les paquets

Qui parle à qui

Quelles procédures / Comment?

Refresher on Artificial Intelligence / Machine Learning

Machine learning: from experience

source: underscore.vc

Machine learning: from approximation

2 types de Machine Learning

Supervisé

Les NOUVELLES attaques sont difficiles à détecter

Supervisé

2 types de Machine Learning

Supervisé

2 types de Machine Learning

Supervisé

Trop de faux positifs

Supervisé

Ces IA sont quand même informatives

Supervisé

Deep learning: deep neural network

deep neural network's hidden layer

Deep learning: quantifying loss

Deep learning: loss optimization

Objective: find optimal $W^* = \operatorname{argmin}_W J(W)$

- 1. Initialize weights randomly
- 2. Loop until convergence
 - 1. Compute gradients
 - 2. Update weights
- 3. Return weights

Deep learning: backpropagation

Objective: compute gradient $\frac{\partial J(W)}{\partial W}$

e.g.,
$$\frac{\partial J(W)}{\partial w_2} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial w_2}$$

$$\frac{\partial J(W)}{\partial w_1} = \frac{\partial J(W)}{\partial \hat{y}} * \frac{\partial \hat{y}}{\partial z_1} * \frac{\partial z_1}{\partial w_1}$$

Deep learning: gradient descent

source: machinelearningmastery.com

Andrew Ng

Application to anomaly detection: AutoEncoders

$$RE = \sum (\hat{x}_i - x_i)^2$$

Brief state of the art

2008

Random-Forests-Based Network Intrusion Detection Systems

Publisher: IEEE

Jong Zhang (Mchammad Zuhamine) Ameri Hague - All Authors

Detection rate (%) False positive rate (%)

88

2.5

Pandom-Forests-Based Network Intrusion Detection Systems Patients State Control Description Detection rate (%) False positive rate (%) 88 2.5

A hybrid network intrusion detection framework based on random forests and weighted k-means

Bullet S. Element A. W. Charrel S. Sellers, * H. Sand S. Eleksis * H. Habets * H. Habets * H. Habets * H. Habets * H.

Detection rate (%)	False positive rate (%)
98.5	6

2013

Multi-Step Attack Detection Based on Pre-Trained Hidden Markov Models

```
by 

Xu Zhang 

Ting Wu 

Ting Wu 

Ting Wu 

Ting Wu 

Ting Glubus Zhang 

Ting Wu 

Ting Wu
```


Multi-Step Attack Detection Based on Pre-Trained Hidden Markov Models

by ② Xu Zhang ¹ Fi, ② Ting Wu ¹ Fi, ③ Clubus Zheng ^{1,1} Fi, ② Liang Zhal ¹ Fi, ② Helshong Hu ¹ Fi, ③ Welhao Yin ^{1,1} Fi, ⑤ Yingpel Zeng ¹ Fi ○ and ② Chusnbul Cheng ² Fi

A novel approach for APT attack detection based on combined deep learning model

accuracy on all measurements from 93 to 98%.

Easy

Multi-Step Attack Detection Based on Pre-Trained Hidden Markov Models

Home > Neural Computing and Applications > Article

A novel approach for APT attack detection based on combined deep learning model

Original Aviate 1 (fublished 1) April 2007

Numer 15, pages 11259 - 11364, CHOTO - Cherton article

accuracy on all measurements from 93 to 98%.

MIF: A multi-step attack scenario reconstruction and attack chains extraction method based on multi-information fusion

Accordance

But ...

30 architectures

400 000 hyperparameters tested

30 architectures

40 000 hyperparameters tested

100 000 flux

4.7% détection 34 234 faux positifs

Why?

Déséquilibre de classe

Médecin

biased			
neighbor	similarity		
nurse	1.0121		
nanny	0.9035		
fiancée	0.8700		
maid	0.8674		
fiancé	0.8617		
mother	0.8612		
fiance	0.8611		
dentist	0.8569		
woman	0.8564		

Déséquilibre de classe

Déséquilibre de classe

Biais inconnus

Cas cyber: flux réseau normal classifié en attaque

Biais inconnus

Cas cyber: flux réseau normal classifié en attaque

PDP

Generalization

- (Weak) assumption: training and test sets are independent and identically distributed (iid)
- Goal: generalize on previously unseen data
- Solutions include regularization and cross-validation

source: Zhou et al., « Domain Generalization: A survey », IEEE Trans. on Patt. Anal. and ML, 2022

Overfitting

- (Weak) assumption: the more the data fits the model the more reduced loss is
- Goal: improve « signal to noise » ratio
- Solutions include regularization, cross-validation, feature selection or data augmentation

source: sourestdeeds.github.io

Concept drift

- (Weak) assumption: data distribution is stationary
- but not all classes are represented uniformly across the training set
- Well-established features may exhibit gradual drifts (concept changes over time)
- Solutions include:
 - Fine-tuning: to samples exhibiting changes on characteristics prone to change
 - Transfer learning: fit trained models to new unlabeled traces
 - Model extension: structure modification to accommodate new classes

Data Explanation

Explicabilité (& Interprétabilité)

Survie des passagers du Titanic

«By design»

Explicabilité

Survie des passagers du Titanic

«By design»

Post hoc explainability

Explicabilité

Survie des passagers du Titanic

«By design»

Post hoc explainability

Travaux Céline

Accuracy	99.9%	95%	90%	Expected
Flow 1	Benign	Attack	Attack	Benign
Flow 2	Attack	Attack	Benign	Attack
Flow 3	Attack	Attack	Benign	Attack
Flow 4	Benign	Benign	Benign	Benign
Flow 5	Benign	Benign	Attack	Attack

The ensemble learning approach takes advantage of multiple ML models to design more accurate systems :

- Bagging
- Boosting
- Stacking combines multiple base learners.
 - Majority voting
 - Weighted voting depending on the model's performance
 - Meta-learner

Feature	Aggregation key	Description
n_dst_ip	IPsrc	Number of destination IP addresses
n_src_ip	IPdst	Number of source IP addresses
n_dst_ports	IPsrc & IPdst	Number of destination ports
n_src_ports	IPsrc & IPdst	Number of source ports
n_fwd_pkts	IPsrc & IPdst	Number of forward packets
n_bwd_pkts	IPsrc & IPdst	Number of backward packets
sum_flx_dur	IPsrc & IPdst	Sum of flows duration
tot_flx	IPsrc & IPdst	Number of flows
sum_pkts_size	IPsrc & IPdst	Sum of packets size
std_pkt_size	IPsrc & IPdst	Standard deviation of packets size

Representation of network anomalies – Denial of Service (DoS)

Data (or the lack of good traffic data)

Representation

- 1. Traffic is captured from the data plane as pcap
- 2. A feature extractor extracts information to represent the traffic in a feature space
 - 1. Packet-level
 - 2. Payload-level
 - 3. Flow-level
- 3. Representation may be further manipulated
 - 1. Feature selection
 - 2. Dimension reduction
 - 3. Representation learning

NIDS Datasets

Recent study surveyed 89 datasets

- General information
 - year of collection
 - scenario
 - normal and attack traffic types
- Nature of data
 - format
 - number of features
 - anonymized parts of the dataset

- Data volume
 - size
 - duration
- Network properties
 - network type
 - complete capture
- Evaluation
 - split
 - labels

Issues with Domain-Specific Properties

- Intra-network variability
 - Computer networks are dynamic and change
- Adversarial environment
 - Attacks attempts to bypass detection
- Inter-network variability
 - Traffic patterns differ among networks

- High cost of errors
 - Unable to balance true and false positives
- Uncertain ground truth & costly labeling
 - Labeling network data is challenging
- Data confidentiality
 - Real-world data might compromise privacy

Datasets Limitations

source: Goldschmidt et al., « Network Intrusion Datasets: A Survey, Limitations, and Recommendations », Computers & Security, 2025

IA génératives

générateur

discriminant

lA génératives

lA génératives

IA génératives

Travaux Gabin

Datasets & Flow format

¹Inter-Arrival Time

- TCP traffic of three malwares C&C channels (Emotet, Dridex, Trickbot) with benign HTTPS.
- Bi-directional flows, identified by the 5-tuple, with associated sequence of packets.
- Packet representation without payload and a limited set of features

Table 1: Packet features for network traffic representation

	Type	Example		
IAT 1	Continuous	1.389s		
Payload size	Numeric	388		
Direction	Binary	0 (forward)		
Flags	Categorical	PA (Psh/Ack)		

NetGlyphizer model

 Autoencoder architecture inspired from VQ-VAE, adapted to sequence processing. Learns to discretize network traffic.

Pcap Labeled Flows

Error Rate

Direction: < 0,0001%

Flags:< 0,001%

Bayesian Network for Traffic Generation

- Focus on legitimate traffic generation: neglected!
- Advantages over GANs
 - GANs struggle with feature dependencies and costly computation
 - BNs are efficient, explainable, and handle conditional dependencies
- Learning with BNs: structure learning and Conditional Probability Tables (CPTs)

Addressing Challenges inherent to BNs

- Reducing Cardinality of Discrete Features
 - CPT size grows polynomially
 - Group public IPs and ephemeral ports (defined as outside the 30 most commons ports)
- Discretizing Numerical Features
 - BNs require discrete variables
 - Two strategies:
 - Quantile discretization: Equal distribution
 - VGM discretization: Gaussian component-based clustering

Synthetic traffic quality evaluation

- Realism: are synthetic flows sampled from the same distribution as the source flows?
 - Ex: Contingency Matrix Difference (CMD), Pairwise Conditional Distribution (PCD)
- Diversity: is the synthetic flows' distribution of similar variance to the source ones'?
 - Ex: Jensen-Shannon Divergence (JSD), Earth Mover's Distance (EMD)
- Novelty: are synthetic flows sufficiently different from source flows?
 - Ex: Membership Disclosure (MD)
- Compliance: do synthetic flows conform well to protocol specifications?
 - Ex: Domain Knowledge Check (DKC)

Comparison with GAN-based approaches

	Description	Real data	Naive	BN _{bins}	BN_{GM}	CTGAN	E-WGAN-GP	NetShare
JSD	Realism and Diversity for categorical features (\$\dplu\$)	0.067	0.0068	0.066	0.070	0.218	0.105	0.399
EMD	Realism and Diversity for numerical features (\$\dplu\$)	0.002	0.002	0.018	0.007	0.029	0.029	0.003
CMD	Realism of Correlation between categorical features (\$\dplu\$)	0.037	0.223	0.031	0.040	0.209	0.050	0.578
PCD	Realism of Correlation between numerical features (\$\psi\$)	0.373	1.222	0.452	0.738	0.863	1.219	0.542
Density	Realism of data distribution (†)	0.951	0.355	0.701	0.855	0.486	0.702	0.027
Coverage	Diversity of data distribution (†)	1.000	0.805	0.792	0.998	0.802	0.996	0.076
MD	Novelty (=)	8.692	7.519	8.312	8.316	7.447	8.341	5.675
DKC	Compliance (\$\dplus\$)	0.006	0.079	0.005	0.005	0.019	0.004	0.129

Apprentissage fédéré

Apprentissage fédéré

Apprentissage fédéré

FL-based Intrusion Detection System

source: Lavaur et al., « The evolution of federated learning-based intrusion detection and mitigation: A survey », IEEE Trans. on Net. and Serv. Mgmt, 2022

Collaborative Detection : Knowledge Sharing

Issues with FL-based IDS

- Knowledge sharing
 - Sharing prototypes improves learning less-represented classes
 - PROTEAN enables zero-shot learning
- Collaboration evaluation
 - Unbalanced data distribution obtained using Dirichlet distribution
- Privacy risk
 - Sharing prototypes does not significantly increase data leakage
- Byzantine resilience
 - Label flipping affects classical aggregation algorithms
 - What about FPL/PROTEAN?

Avoid being detected

Threats against ML Systems

Evasion attacks: threat model and problem formulation

- Knowledge restriction
 - White box
 - Grey box
 - Black box
- Attack objective
 - Untargeted
 - Targeted

Minimize:

$$D(x, x + \delta)$$

Such that:

- $C(x + \delta) = t$ (class constraint)
- $x + \delta \in [0, 1]^n$ (validity constraint)

Evasion: feature-space attacks

source: Pierazzi et al., « Intriguing properties of adversarial ML attacks in the problem space », IEEE Symposium on Security and Privacy, 2020

Properties of adversarial examples

- Perturbations
 - What features, amount of noise, distance from unperturbed sample
- Domain constraints
 - Syntactic constraints (according to specifications, to types, to exclusiveness (e.g., 1-hot encoding))
 - Semantic links, i.e., dependency between features (computed from one or several features, across one or many samples)
- Manipulation space

Are adversarial examples against NIDS practical?

Criterion Dataset	Value intervals			Non-binary values			Multiple categories		
	NSL-KDD	UNSW-NB15	CIDDS-01	NSL-KDD	UNSW-NB15	CIDDS-01	NSL-KDD	UNSW-NB15	CIDDS-01
FGSM	100%	100%	100%	100%	100%	100%	100%	100%	100%
BIM	100%	100%	100%	100%	100%	100%	100%	100%	100%
DeepFool	100%	100%	100%	100%	100%	100%	100%	100%	100%
$C\&WL_2$	99.38%	99.55%	99.01%	100%	99.97%	99.92%	0%	0%	0%
$\text{C\&W}L_{\infty}$	73.70%	93.15%	98.97%	75.46%	93.38%	99.82%	28.26%	48.83%	0.22%
$C\&WL_0$	70.27%	32.77%	0.43%	58.01%	15.19%	99.74%	0.24%	0.02%	0.48%
JSMA	0.01%	6.52%	0%	31.93%	68.32%	0.67%	31.02%	68.32%	0.67%

source: Merzouk et al., « Investigating the practicality of adversarial evasion attacks on network intrusion detection », Annals of Telecommunications 77 (11), 2022

Feature space vs. Problem space

source: Pierazzi et al., « Intriguing properties of adversarial ML attacks in the problem space », IEEE Symposium on Security and Privacy, 2020

Inverse feature-mapping problem

source: Pierazzi et al., « Intriguing properties of adversarial ML attacks in the problem space », IEEE Symposium on Security and Privacy, 2020

Problem-space constraints

• Find the sequence of valid transformations **T** such that an object z of label y is misclassifed as t i.e., we want to transform z to:

$$z' = T(z)$$

such that $\varphi(z) = x + \delta$ and z' is valid and realistic

- Available transformations (T): which modifications can be performed in the problem space
- Preserved semantics (Υ): while mutating z to z', wrt specific features abstractions which the attacker aims to be resilient against
- Plausibility (Π): (qualitative) properties must be preserved in mutating z to z', so that z' appears realistic upon manual inspection
- Robustness to preprocessing (Λ): determines which non-ML techniques could disrupt the attack

Problem-space attack: image domain

- Threat model: perfect knowledge on a DL-based image (pixels) classifier
- T: modification of pixel values (integer between 0 and 255)
- Y: constrained perturbation to prevent image from becoming an image from another class
- Π: none explicitly considered (back in 2017)
- Λ: constrained perturbation to prevent changes from being perceptible to a human
- Search strategy: gradient-driven with no side effects

Problem-space attack: code domain

- Threat model: zero knowledge on any static analysis features (AST, PDG, CFG) classifier
- T: transplantation of semantically-equivalent benign ASTs
- Υ: preservation of malicious semantics by construction (ASTbased transplantation)
- Π: robust to removal of function/variable name inconsistencies
- Λ: by construction if no obsolete objects are used
- Search strategy: problem-driven (search of sub-AST graphs in benigh samples); side effects are incurred

XAI-driven Black-box Attack

- Analyze the target's model decisions, in part. negatives, with KernelSHAP
- 2. Select k most important features, which are problem-space compliant
- 3. Plot true positives and negatives in the k-dimensional space
- 4. Validate features after computing a correlation heatmap
- 5. Chose candidate features to perturb
- 6. Implement perturbations in the problem space

XAI-driven Attack Use Case: XSS

source: Okada et al., « XAI-driven black-box adversarial attacks on network intrusion detectors », Intl Journal of Inf. Sec., 2025

XAI-driven Attack Use Case: XSS

source: Okada et al., « XAI-driven black-box adversarial attacks on network intrusion detectors », Intl Journal of Inf. Sec., 2025

Evasion defenses

- Adversarial training: include adversarial examples in the training set
- Obfuscated gradients: disrupt gradient-descent by masking
- Defensive distillation: transfer knowledge to a new NN which is trained with probability vectors as output instead of class labels
- Feature squeezing: reduce dimensionality by filtering unnecessary features
- Feature removal: remove most vulnerable features
- Adversarial detection: estimate density estimations (for example, on the last layer) compared to the training set of a class (e.g., benign)
- Adversarial query detection: detect the similarity among a group of queries

Practical

Need to work in « real time » and « real environment »

Real time meaning?

How many flows / second ?

Custocy models

Weak model 1: network packets

Weak model 2 : network flows

Weak model 3: aggregation of flows

Weak model 4: analyse comportementale

4 Weak models: 1 strong model

Conclusion

Appendices

Deep learning: the perceptron

$$\hat{y} = g(w_0 + \sum_{j=1}^{m} x_j w_j)$$
single neuron computation

$$\hat{y} = g(w_0 + X^T W)$$

matrix notation

source: introtodeeplearning.com

Inputs

Deep learning: the perceptron

$$z = w_0 + \sum_{j=1}^{m} x_j w_j$$
simplified input vector

Deep learning: multi-output perceptron

$$\mathbf{z}_{i} = w_{0,i} + \sum_{j=1}^{m} x_{j} w_{j,i}$$
multi-output perceptron

Deep learning: hidden layers

$$z_i = w_{0,i}^{(1)} + \sum_{j=1}^m x_j w_{j,i}^{(1)}$$

hidden layer

$$\hat{y}_i = g(w_{0,i}^{(2)} + \sum_{j=1}^d g(z_j)w_{j,i}^{(2)})$$

single neural network's final output

source: introtodeeplearning.com