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Introduction

Centralized Data Processing

Central Party

Computation
(e.g., ML model)

▶ data concentration into possibly untrusted organizations

▶ data is often sensitive→ raises privacy concerns
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Decentralized Algorithms

Among many measures such as Government Regulations (e.g., GDPR) and Technical

Solutions (Cryptography, Anonymization, Obfuscation, . . . )

Decentralized trend:

▶ keep data local, exchange computations

Central Server

=
1
n
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Decentralized Algorithms

Among many measures such as Government Regulations (e.g., GDPR) and Technical

Solutions (Cryptography, Anonymization, Obfuscation, . . . )

Decentralized trend: Federated Learning
1

▶ keep data local, exchange computations

Central Server

=
1
n

1
Kairouz, Peter, et al. "Advances and open problems in federated learning." Foundations and trends® in

machine learning (2021)
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Decentralized Algorithms

Among many measures such as Government Regulations (e.g., GDPR) and Technical

Solutions (Cryptography, Anonymization, Obfuscation, . . . )

Decentralized trend: Decentralized Computations (ML
1
, MPC)

▶ keep data local, exchange computations

1
Ormándi, Róbert, et al. "Gossip learning with linear models on fully distributed data." 2013.
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Challenges of Decentralization

Challenges

1. Messages can compromise privacy

▶ Membership Inference Attacks

▶ Data Reconstruction Attacks

2. Outcome depends on many participants

▶ Unexpectedly disconnect or crash

▶ Intentionally deviate from the protocol

▶ collude and gather private information

3. May require a large communication cost
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Outline

Focus:

▶ Distributed Mean Estimation under Differential Privacy constraints

Contributions:

1. An accurate, scalable and verifiable protocol for federated differentially private

averaging. Machine Learning, 2022.

with Aurélien Bellet and Jan Ramon.

2. Private sampling with identifiable cheaters. PoPETS 2023

with Florian Hahn, Andreas Peter and Jan Ramon

3. Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean

Estimation.. ArXiv preprint, 2025.

with Sonia Ben Mokhtar and Jan Ramon.

▶ Conclusion
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Distributed Mean Estimation under DP

Problem: Private Mean Estimation

▶ Set U = {1, . . . , n} of parties
▶ Each party u ∈ U has a private value Xu (scalars, gradients, models..)

▶ No party is trusted with the data of others

▶ Goal: Estimate
1

n

∑
u
Xu while satisfying differential privacy constraints

Key Primitive in Private Federated Learning

Central Server

=
1
n

▶ Can be used to Federated SGD, matrix factorization, empirical CDFs,

decision trees, private clustering, linear regression, . . .
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Differential Privacy (DP)

A stochastic algorithm A is (𝜀, 𝛿)-Differentially Private if
▶ for all possible outcomes O
▶ any pair of neighboring datasets D, D

′

Pr[A(D) = O] ≤ exp (𝜀) Pr [A(D′) = O] + 𝛿

where two datasets are neighboring if they only differ the data of one party

▶ Related to resistance against MIA

▶ DP guarantees can be obtained by randomizing computations

▶ E.g. using Gaussian, Binomial, Laplacian or Exponential noise

▶ More noise→ smaller 𝜖 and/or 𝛿

▶ Protect from any adversary for a given view O
▶ Sometimes difficult to prove and/or compromise accuracy
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Private Averaging: Previous Approaches

Local DP
2 3

Estimate

Untrusted Curator

▶ huge amount of noise

▶ in most cases, it produces inaccurate models

2
[Duchi et al. FOCS 2013]

3
[Kasiviswanathan, et al. SIAM Journal on Computing, 2011]
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Private Averaging: Previous Approaches

Central DP

Outcome

Trusted Curator

▶ O(n) factor of reduction compared to local DP variance

▶ a trusted party is required

asd
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Private Averaging: Previous Approaches

Cryptographic Primitives

Estimate

Secure Aggregation 
(or Secret Sharing, Shuffler, ...)

▶ poor scalability, O(n) messages per party
2

▶ vulnerable to malicious participants

2
[Bonawitz et al., CSS 2017.]
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Distributed Mean Estimation under DP

Problem: Private Mean Estimation

▶ Set U = {1, . . . , n} of parties
▶ Each party u ∈ U has a private value Xu (scalars, gradients, models..)

▶ No party is trusted with the data of others

▶ Goal: Estimate
1

n

∑
u
Xu while satisfying differential privacy constraints
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Our Contributions

1. Accuracy in the order of Central DP

▶ Unlike Local DP

2. Logarithmic number of messages per party

▶ Unlike previous Secure Aggregation
3 4

3. Robustness against malicious parties

3
[Bonawitz et al., CSS 2017]

4
[Bell et al., CSS 2020] is a concurrent work that also provides low communication
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Setting

▶ Users can communicate with others through secure channels

▶ Messages are modeled by communication graph G = (U, E)

asdf

▶ asdf

▶ asdf

▶ asdf
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Setting

▶ Users can communicate with others through secure channels

▶ Messages are modeled by communication graph G = (U, E)

A proportion 𝜌 of honest (but curious) users:

▶ follow the protocol

▶ might try to infer information

▶ do not collude with other users
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Setting

▶ Users can communicate with others through secure channels

▶ Messages are modeled by communication graph G = (U, E)

Adversary: a proportion of (1 − 𝜌) malicious users

▶ deviate from the protocol and collude among them

▶ try to (1) infer information and (2) bias the computation

▶ know the graph G (who communicated with whom)
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Setting

▶ Users can communicate with others through secure channels

▶ Messages are modeled by communication graph G = (U, E)

The sub-graph of honest users is G
H

▶ channels whose information the is not seen by the adversary

▶ not known by honest parties

▶ asdf

13 / 57



Protocol

Input: graph G, canceling variance 𝜎2

Δ, independent variance 𝜎
2

𝜂

for all neighbor pairs {u, v} ∈ E (G) do
1a. u and v draw canceling noise term 𝛿 ∼ N(0, 𝜎2

Δ)
1b. set Δu,v ← 𝛿 , Δv,u ← −𝛿

end for

for each user u ∈ U do

2. u draws independent noise term 𝜂u ∼ N(0, 𝜎2

𝜂)
3. u computes X̂u ← Xu +

∑
u∼v Δu,v + 𝜂u

end for

4. Average X̂1, . . . , X̂n in the clear (Gossip Avg. or Server)

Algorithm 1: Gopa (GOssip for Private Averaging)

▶ Unbiased estimate of the average: X̂
avg = 1

n

∑
u
X̂u with variance 𝜎2

𝜂/n
▶ Secure Aggregation has a similar structure without independent noise

14 / 57



Properties

▶ Privacy with trusted curator utility

▶ Logarithmic communication per party

▶ Robustness against malicious participants

15 / 57



Privacy Guarantees - General Result

Theorem (General Result)

Gopa can achieve (𝜀, 𝛿)-DP with (order) trusted curator accuracy when

▶ the sub-graph G
H
of honest users is connected

▶ canceling noise 𝜎2

Δ is large enough
The required 𝜎2

Δ depends on the connectivity of G
H

▶ malicious participants degrade accuracy by a factor n/𝜌n compared to central DP

▶ How can users safely construct G to ensure that G
H
is good enough?

▶ Secure Aggregation solves it at a large communication cost
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Properties

▶ Privacy with trusted curator utility

▶ Logarithmic communication per party

▶ Robustness against malicious participants

17 / 57



Privacy with Small Communication

▶ k-out random graph: each user chooses k neighbors at random

▶ G
H
is sufficiently connected with high probability even if k is small

Theorem (k-out Random Graphs)

Let 𝜀, 𝛿 ∈ (0, 1) and
▶ k logarithmic in n

▶ bounded 𝜎2

Δ (linear in n)

Then Gopa is (𝜀, 𝛿)-DP with trusted curator accuracy

▶ Trusted curator accuracy with logarithmic number of messages per user

▶ k increases with n. of colluders
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Illustrations - Communication

Requirements for connected G
H
:

In theory:

▶ 10000 parties, no colluders→ 105 messages per party

▶ 10000 parties, 50% colluders→ 203 messages per party

In practice (success over 10
5
executions of Gopa)

▶ 1000 parties, no colluders→ 10 messages per party

▶ 1000 parties, 50% colluders→ 17 messages per party

▶ 10
4
parties, 50% colluders→ 20 messages per party

Messages are only small random seeds (and not large models/gradients)

19 / 57



Illustrations - Accuracy

n = 10000, (𝜀, 𝛿)-DP, 𝛿 = 1/(𝜌n)2

Variance Federated SGD for Logistic Regression

(𝜀 = 0.1) (UCI Housing Dataset, 𝜀 = 1, 𝜌 = 0.5)
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Central DP with n users
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Number of iterations
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FedSGD w. trusted curator (Central DP)

FedSGD w. GOPA ( = 0.5)

FedSGD w. local DP

▶ Gopa is close to Fed-SGD with trusted curator even with 50% of malicious

users

▶ LDP has much larger variance and does not arrive to learn anything
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Properties

▶ Privacy with trusted curator utility

▶ Logarithmic communication per party

▶ Robustness against malicious participants
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Preventing Poisoning

Goal: prevent that a malicious user u poisons X̂u (as much as possible)

Our Approach:

1. Shared bulletin board to publish messages

2. Cryptographic Commitments
5

▶ allow to commit to a private value without revealing it

3. Zero Knowledge Proofs
6

▶ allow to prove properties and relations between committed secret values

5
Pedersen, TP. Non-interactive and information-theoretic secure verifiable secret sharing. CRYPTO, 1991.

6
Cramer, R. Modular design of secure yet practical cryptographic protocols. Ph.D. thesis, 1996.
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Preventing Poisoning (II)

Verification Protocol. Each user u ∈ U :

1. Publishes an encrypted log of its computations using commitments

2. Prove without revealing sensitive information that:

Xu is in the correct domain

Δu,v = −Δv,u, ∀v neighbor of u
𝜂u ∼ N(0, 𝜎2

𝜂), (with customizable precision)

X̂u = Xu +
∑︁
u∼v

Δu,v + 𝜂u .

using Zero Knowledge Proofs.

▶ u can lie about Xu, but this is also true in the central setting

▶ Cryptographic primitives have a tractable cost
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Takeaways

▶ A performant protocol for Private Aggregation

▶ Tolerate large amounts of collusion (>50%) while keeping its properties

▶ Also offer resistance to dropouts (explained later)
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Outline

Focus:

▶ Distributed Mean Estimation under Differential Privacy constraints

Contributions:

1. An accurate, scalable and verifiable protocol for federated differentially private

averaging. Machine Learning, 2022.

with Aurélien Bellet and Jan Ramon.

2. Private sampling with identifiable cheaters. PoPETS 2023

with Florian Hahn, Andreas Peter and Jan Ramon

3. Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean

Estimation.. ArXiv preprint, 2025.

with Sonia Ben Mokhtar and Jan Ramon.

▶ Conclusion
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Motivation

Verification Protocol of Gopa. Each user u ∈ U :

1. Publishes an encrypted log of its computations using commitments

2. Prove without revealing sensitive information that:

Xu is in the correct domain

Δu,v = −Δv,u, ∀v neighbor of u
→ 𝜂u ∼ N(0, 𝜎2

𝜂), (with customizable precision)

X̂u = Xu +
∑︁
u∼v

Δu,v + 𝜂u .

using Zero Knowledge Proofs.
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Example: Private Aggregation

1. Each user u samples 𝜂u ∼ D to satisfy differential privacy

2. Compute noisy estimate

∑
u
Xu + 𝜂u

Estimate

Untrusted Curator

▶ Malicious user u can poison Xu, 𝜂u to bias the outcome

▶ Methods exist to verify that Xu is in the correct domain

(e.g. Zero Knowledge Range Proofs)

▶ Verifying that 𝜂u ∼ D without revealing 𝜂u is less explored

(Especially for the Gaussian distribution)
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Our Problem

We study secure randomization for privacy preserving protocols:

▶ n parties P1, . . . , Pn

▶ adversary: a static set of malicious colluding parties

▶ a publicly known distribution D

Verifiable Noise Samples

P1, . . . , Pn run a multiparty protocol to generate a number 𝜂 ∈ R such that, if at least

one party is honest:

▶ 𝜂 is unknown to most of the parties

▶ all parties can verify that 𝜂 ∼ D

Two flavors:

▶ Private Samples: Only one party P1 knows 𝜂

▶ Hidden Samples: Nobody knows 𝜂 → is a secret shared among P1 . . . Pn
28 / 57



Main Contributions

We propose protocols for

▶ Private Samples for Gaussian, Laplacian and arbitrary D
▶ Hidden Samples for Gaussian and Laplacian distribution

We evaluate

▶ Gaussian Private Samples

▶ Show that we outperform previous Gaussian secure sampling techniques

While doing so:

▶ Propose novel techniques to prove non-polynomial, finite-precision relations in

zero knowledge.

We provemalicious security with identifiable abort:
7

Our protocols finish correctly or abort if it detects a cheater

7
Ishai et al. Secure multi-party computation with identifiable abort. Advances in Cryptology–CRYPTO

2014. August 17-21, 2014.
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Private Samples: Approach

▶ Only P1 knows 𝜂

Tools:

▶ Public Bulletin Board

▶ Zero Knowledge Proofs (ZKPs): Compressed Σ-Protocols8

Can prove that C(x) = 0, for a private x and circuit C

(non-interactively by the Fiat-Shamir Heuristic)

If D is the uniform distributionU{0 . . .M}:
1. P1 commits to a private x ←$ {0 . . .M}
2. All parties jointly generate a public y ←$ {0 . . .M}
3. P1 commits to 𝜂 and proves that 𝜂 = x + y mod M + 1 in zero knowledge

8
Attema and Cramer. Compressed Σ-Protocol Theory and Practical Application to Plug & Play Secure

Algorithmics. Advances in Cryptology–CRYPTO 2020
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Private Samples: Approach (II)

Uniform Seeds Samples of D

Transformation

For any distribution D:

1. Execute the uniform protocol to get seeds u1, . . . , uk

2. P1 proves that 𝜂 = Transformation(u1, . . . , uk) in ZK

▶ inverse CDF for any D
▶ specialized techniques for some D (e.g. Gaussian)

For transformations, we propose iterative approximation circuits

▶ Avoid table-lookups and splines

▶ No preprocessing, few comparisons, customizable precision
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Example: Secure Aggregation with Private Samples

▶ Every party Pu knows a private term 𝜂u

Estimate

Secure Aggregation 
(or Secret Sharing, Shuffler, ...)

▶ The output is unbiased

▶ Set S of colluding malicious users know {𝜂u}u∈S
▶ Honest users add n/|S | more noise to compensate
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Hidden Samples: Approach

▶ 𝜂 is secret shared among P1, . . . , Pn

Tools:

▶ Public Bulletin Board, ZKPs

▶ Arithmetic Secret Sharing (SS)
9 10

Allows to compute C(x) for a secretly shared x and circuit C

If D is the uniform distributionU{0 . . .M}:
1. Each party Pu draws a private xu ←$ {0 . . .M}
2. (x1, . . . , xn) already is a hidden draw of 𝜂

▶ i.e.

∑
u
xu (mod M + 1) ∼ U{0 . . .M}

For other D:

▶ Generate uniform seeds, run transformation circuits in SS

9
Damgård, Ivan, et al. Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation.Theory of

Cryptography: TCC 2006.

10
Damgård, Ivan, et al. Practical covertly secure MPC for dishonest majority–or: breaking the SPDZ limits. Computer Security–ESORICS 2013
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Example: Secret Sharing with Hidden Samples

▶ Hidden Sample: 𝜂 is secret shared among P1, . . . , Pn

Estimate

Secret Sharing

▶ The output is unbiased

▶ Optimal amount of noise (i.e. as with a trusted curator)

▶ No accuracy degradation even if n − 1 users collude 11

▶ Expensive in communication

11
Boenisch, Franziska, et al. Is Federated Learning a Practical PET Yet?. arXiv preprint arXiv:2301.04017 (2023).
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Evaluation: Private Gaussian Samples

▶ Widely used in distributed DP (among other applications)

Prior Work
12
: Central Limit Theorem(CLT)

▶ each sample requires a large amount of seeds

We propose methods that require only one seed per sample:

Inversion Method:

▶ inverse CDF has no closed form

▶ approximation with Series (GOPA: InvM-S)

▶ approximation with Rational Functions (InvM-R)

Box Müller(BM):

▶ requires log, sqrt, sin, cos

▶ Polar Method(PolM) is optimized to avoid sin, cos

12
Dwork et al. Our Data, Ourselves: Privacy Via Distributed Noise Generation. EUROCRYPT 2006.
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Evaluation: Private Gaussian Samples

We compare (for different precision parameters)

▶ Statistical quality: MSE to an ideal Gaussian over 10
7
samples

▶ Cryptographic cost of ZKPs per sample

Communication Computation (Prover)
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InvM-S
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▶ If quality is more important: PolM and BM (< 0.5s, < 1 KB)

▶ Otherwise: CLT can generate fast samples (10 ms)

36 / 57



Takeaways

Assuming the existence of a bulletin board

▶ Formalize secure randomness generation

▶ Propose sampling procedure for arbitrary distributions

▶ Generate private Gaussian samples efficiently
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Outline

Focus:

▶ Distributed Mean Estimation under Differential Privacy constraints

Contributions:

1. An accurate, scalable and verifiable protocol for federated differentially private

averaging. Machine Learning, 2022.

with Aurélien Bellet and Jan Ramon.

2. Private sampling with identifiable cheaters. PoPETS 2023

with Florian Hahn, Andreas Peter and Jan Ramon

3. Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean

Estimation.. ArXiv preprint, 2025.

with Sonia Ben Mokhtar and Jan Ramon.

▶ Conclusion
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Distributed Mean Estimation under DP

Problem: Private Mean Estimation

▶ Set U = {1, . . . , n} of parties
▶ Each party u ∈ U has a private value Xu (scalars, gradients, models..)

▶ No party is trusted with the data of others

▶ Goal: Estimate
1

n

∑
u
Xu while satisfying differential privacy constraints

New unexpected events:

▶ Parties might drop out in the middle of the computation
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GOPA

Input: graph G, canceling variance 𝜎2

Δ, independent variance 𝜎
2

𝜂

for all neighbor pairs {u, v} ∈ E (G) do
1a. u and v draw canceling noise term 𝛿 ∼ N(0, 𝜎2

Δ)
1b. set Δu,v ← 𝛿 , Δv,u ← −𝛿

end for

for each user u ∈ U do

2. u draws independent noise term 𝜂u ∼ N(0, 𝜎2

𝜂)
3. u computes X̂u ← Xu +

∑
u∼v Δu,v + 𝜂u

end for

4. Average X̂1, . . . , X̂n in the clear (Gossip Avg. or Server)

Algorithm 2: Gopa (GOssip for Private Averaging)

▶ Unbiased estimate of the average: X̂
avg = 1

n

∑
u
X̂u with variance 𝜎2

𝜂/n
▶ Secure Aggregation has a similar structure but with cryptographic noise
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Drop-out Harm

If the set D of parties drop-out before finishing.

X̂
avg =

∑︁
u∈O

X̂u =
∑︁
u∈O

X̂u + 𝜂u +
∑︁

v∈D∩N (u)
Δv,u

Where O is the set of online parties.

Reparation

▶ In Secure Aggregation

▶ abort and re-start

▶ use a centrally orchestrated recovery

▶ In Gopa

▶ the harm is bounded→ depends on 𝜎2

Δ
▶ a recovery mechanism is also possible→ partially mitigates the problem
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Our Contributions

1. Accuracy in the Order of Central DP when no drop-outs occur

▶ Unlike Local DP

2. Fully Decentralized Setting

▶ Unlike Secure Aggregation

3. Better Robustness to Drop-outs than other decentralized protocols

▶ with respect to previous protocols (e.g. GOPA)

4. Low Communication Cost

▶ Comparable to GOPA
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Setting

▶ Synchronous Gossip: T gossip rounds

▶ At each round t ∈ {1, . . . , T }:

▶ model interaction with directed graphs Gt = (P, Et )
▶ weighted adjacency matricesWt ∈ Rn×n:

Wt;j,i

{
> 0 if (i, j) ∈ Et
= 0 otherwise
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Setting

▶ Synchronous Gossip: T gossip rounds

▶ At each round t ∈ {1, . . . , T }:

▶ set Ot of messages are observed

▶ have crucial impact in privacy
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Setting

▶ Synchronous Gossip: T gossip rounds

▶ At each round t ∈ {1, . . . , T }:

▶ C ⊂ P parties are corrupted

▶ observe all incoming and outgoing messages

▶ Assume Semi-honest:

▶ collude

▶ don’t deviate from the protocol

▶ Wt is known by the adversary

▶ as in [Cyffers et al., ICML 2024]
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Gossip Protocols

Input: X ∈ [0, 1]n,W1, . . . ,WT ∈ Rn×n
for all i ∈ U do

y
(0)
i
← Xi

end for

for t ∈ {1 . . . T } do
for all i ∈ U do

y
(t )
i
← ∑

j∈U Wt;i,jy
(t−1)
j

end for

Compute
1

n

∑
i∈P y

(T )
i

with Gossip (Alg. 3)

Algorithm 3: Classic (Synchronous) Gossip

Gossip Averaging
a

IfW1, . . . ,WT

▶ have good spectral properties

then it converges to
1

n

∑
i∈U Xi .

▶ not private

a
[Boyd, Stephen, et al. "Randomized

gossip algorithms." IEEE transactions on

information theory, 2006]
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Gossip Protocols

Input: X ∈ [0, 1]n,W1, . . . ,WT ∈ Rn×n
for all i ∈ U do

Sample 𝜂i ∼ N(0, 𝜎2

ldp
)

y
(0)
i
← Xi+𝜂i

end for

for t ∈ {1 . . . T } do
for all i ∈ U do

y
(t )
i
← ∑

j∈U Wt;i,jy
(t−1)
j

end for

Compute
1

n

∑
i∈P y

(T )
i

with Gossip (Alg. 3)

Algorithm 4: Muffliato

Muffliato
a

▶ good privacy and scalability

However,

▶ accurate for relaxed DP

▶ inaccurate in our DP setting

(as in LDP)

a
[Cyffers et al, NeurIPS 2022]
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Gossip Protocols

Input: X ∈ [0, 1]n,W1, . . . ,WT ∈ Rn×n
for all i ∈ U do

Sample 𝜂★
i
∼ N(0, 𝜎2

★)
Sample (zi,1, . . . , zi,T ) ∼ D(Xi + 𝜂★

i
)

y
(0)
i
← zi,1

end for

for t ∈ {1 . . . T } do
for all i ∈ U do

y
(t )
i
← ∑

j∈U Wt;i,jy
(t−1)
j

+ zi,t
end for

Compute
1

n

∑
i∈P y

(T )
i

with Gossip (Alg. 3)

Algorithm 5: Incremental Averaging (IncA)

Incremental Averaging (IncA):

▶ (zi,1, . . . , zi,T ) ∼ D(Xi + 𝜂★
i
)

▶
∑

T

t=1 zi,t = Xi + 𝜂★
i

▶ protect privacy

▶ don’t harm accuracy

▶ have small variance

▶ robust to drop-outs

▶ IfW1 . . .WT are col. stochastic

1

n

∑︁
i∈U

y
(T )
i

=
1

n

∑︁
i∈U

Xi + 𝜂★i

▶ 𝜂★
i
has small variance
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Sample 𝜂★
i
∼ N(0, 𝜎2

★)
Sample 𝜂i,1 . . . 𝜂i,T ∼ N(0, 𝜎2

Δ)
y
(0)
i
← 1

T
(Xi + 𝜂★

i
)+𝜂1,1

end for

for t ∈ {1 . . . T − 1} do
for all i ∈ U do

y
(t )
i
← ∑

j∈U Wt;i,jy
(t−1)
j

+ 1

T
(Xi + 𝜂★

i
) − 𝜂i,t + 𝜂i,t+1

end for

y
(T )
i
← ∑

j∈U WT ;i,jy
(T−1)
j

−𝜂i,T
Compute

1

n

∑
i∈P y

(T )
i
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Algorithm 6: Incremental Averaging (IncA)
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Privacy: Abstract Result

GivenW = {W1, . . . ,WT } the adversary can see:

BX + A𝜂 = yobs

where

▶ X , 𝜂: unknowns

▶ B(W), A(W): known coefficients

▶ yobs = {(y (t )
i
) : i was observed at iteration t}

▶ 𝜂 eta should have large dimension for privacy

Theorem (Abstract Result)

Let Σ𝜂 = var (𝜂). IncA is (𝜖, 𝛿)-DP if

t
⊤(AΣ𝜂A⊤)−1t <

𝜖2

2 ln(1.25/𝛿) for all columns t of B.

▶ Tight accounting of 𝜖, 𝛿 based on the structure of correlations
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Privacy: Central DP accuracy

For all (i, t) ∈ P × [0, T − 1], let

a
(i,t ) := Wt;:,i − 1i ∈ Rn

(associated with the outgoing edges of party i at iteration t)

and

H :=
{
a
(i,t ) : (i, t) ∈ P × [0, T − 1] and y

(t )
i

is not observed

}
Theorem (Positive results)

If

▶ 𝜎2

Δ sufficiently large and

▶ H has at least nH − 1 linearly independent vectors
then

▶ IncA is (𝜖, 𝛿)-DP with Central DP accuracy.
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Experiments: Accuracy without Drop-out

No Dropout, 𝜖 = 0.1, 𝛿 = 10
−5
, n = 1024

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Proportion of Corrupted Parties

10 2

10 1

100

M
SE

IncA under C-DP, E-DP
Local DP, Muffliato under C-DP
Central DP
Muffliato-Hypercube under PNDP

▶ matches accuracy of GOPA and Secure Aggregation

▶ solely relaxing to PNDP is substantially less accurate

▶ When is this accuracy achieved?
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Best topologies without Drop-out

▶ Gt is k-out graph for each t ∈ {1, . . . , T }
▶ 30% Corrupted Parties (right), No Dropout, 100 simulations, n = 100,

k ∈ {1, 2, 3, 4, 5}
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▶ + iterations→ + chance of success

▶ + dynamic is the graph→ + likely is

diversity of exchanges

▶ Lower k → smaller communication

cost
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Communication without Dropout

k = 1, 100% of success over 10
5
runs
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▶ Low communication even with large amount of colluders
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Performance with Dropout

Comparison with GOPA for similar communication and CorDP-DME

10% corrupted parties, n = 200, 𝜖 = 0.2, 𝛿 = 10
−
5

0.00 0.05 0.10 0.15 0.20
Proportion of Dropouts ( )

10 1

100

M
SE

IncA, k=1, T=20
GOPA, k=20, 2 = 2

GOPA, k=20, 2 = 4

GOPA, k=20, 2 = 1
n

CDP with 200 Parties
LDP with 200 Parties
CorDP-DME

▶ increasing T increase the

accuracy of IncA

▶ Best performance of IncA is

with k = 1

▶ IncA outperforms the other

protocols
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Negative results

If

1. the graph is static (W1 = W2 = · · · = W2)

2. the adversary observes

▶ only 2 nodes during all execution (is easy with static graphs)

then it is not possible to obtain CDP accuracy with our previous result.

▶ static graphs→ not sufficient exchange diversity
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Takeaways

▶ DP-DME can be done canceling noise across iterations

▶ is shown to be accurate, communication efficient and robust to collusion

▶ incremental injection reduces the variance of canceling noise

▶ low variance increase robustness to parties dropping-out
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Outline

Focus:

▶ Distributed Mean Estimation under Differential Privacy constraints

Contributions:

1. An accurate, scalable and verifiable protocol for federated differentially private

averaging. Machine Learning, 2022.

with Aurélien Bellet and Jan Ramon.

2. Private sampling with identifiable cheaters. PoPETS 2023

with Florian Hahn, Andreas Peter and Jan Ramon

3. Dropout-Robust Mechanisms for Differentially Private and Fully Decentralized Mean

Estimation.. ArXiv preprint, 2025.

with Sonia Ben Mokhtar and Jan Ramon.

▶ Conclusion
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Conclusion

Presented correlated noise approaches:

▶ Can substantially increase accuracy of DP mechanisms

▶ Hit a good balance between noise variance and communication

▶ Variance can be further reduced with incremental injection

▶ Non-cryptographic noise can withstand failures

Using a bulletin board one can prove

▶ correct computations via ZKPs

▶ randomized behaviors

with tractable in communication and computation cost.
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Perspectives

Further improve current work:

▶ Dropout noise correction on higher level systems

▶ Incremental averaging: Increase the number of interactions per iteration

▶ Incremental avg. (II): Theoretical bounds of correlated noise variance

Use correlated noise for other types of transformation

▶ Decentralized SGD
13

▶ Across ML Iterations
14

Fine-grained analysis of the cost of a bulletin board

13
Allouah, Youssef, et al. "The Privacy Power of Correlated Noise in Decentralized Learning." ICML 2024

14
Kairouz, Peter, et al. "Practical and private (deep) learning without sampling or shuffling." ICML 2021.
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Perspectives (II)

Increase robustness against poisoning on Xu:

▶ Byzantine Aggregation
15

▶ Verification of local computations
16

▶ Verification of data correctness across time

Accurately estimate the threats:

▶ View

▶ Knowledge

▶ Computational Capabilities

of the adversary.

15
Allouah, Youssef, Rachid Guerraoui, and John Stephan. "Towards Trustworthy Federated Learning with

Untrusted Participants."

16
Xing, Zhibo, et al. "Zero-knowledge proof meets machine learning in verifiability: A survey.", arXiv 2023
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Thank you!

Questions?
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