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The notion of  DP

the use of  data containing personal information has to be restricted in order to protect 

individual privacy
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The notion of  DP
• What if  we simply remove the names?1

1 A. Narayanan et al. IEEE SP 2008, L. Sweeney et al. 2002, and so on.

Sensitive

information

might still leak



A. Ünsal, EURECOM 5Cyber in Occitanie

The notion of  DP

• Syntactic privacy

• Assumption: only these three groups (mutually exclusive) without any overlap

• Idea: Removing identifiers will prevent re-identification

• Linking attacks based on public attributes

Source: Zapatka et al., “Short Summary of  Syntactic Privacy”, 2023

Direct identifiers Quasi 

identifiers

Sensitive 

attributes
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The notion of  DP

• Gender, date of  birth, and zip code are sufficient to uniquely identify the vast 

majority of  Americans

• Linking these attributes in a supposedly anonymized healthcare database to public 

voter records, Latanya Sweeney2 managed to identify the individual health record 

of  the Governor of  Massachussetts

• Need for a robust definition of  privacy→Linkage attacks

 Immune to attacks using auxiliary knowledge

2 L. Sweeney, “k-anonymity: A model for Protecting Privacy”, Int. J. Uncertainty Fuziness and Knowledge-Based 

Systems 10, 2002



A. Ünsal, EURECOM 7Cyber in Occitanie

The notion of  DP

• Requirement for a privacy measure:

 Personal data processing ⇔ Right to privacy

• Privacy: Syntactic vs Semantic

 Syntactic privacy is a property of  the dataset, statistical disclosure

control approach (e.g. k-anonymity)

 Semantic privacy ensures a privacy property on the mechanism anonymizing 

the data (e.g., ε-DP)
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The notion of  DP

• Components:

 Database → individual records

 User/curator→ a trusted entity to protect data privacy

 Analyst → executes computations on the dataset
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The notion of  DP

• Differential Privacy describes a promise, made by a data holder, or curator, to a

data subject (owner), and the promise is like this:

“You will not be affected adversely or otherwise, by allowing your data to be

used in any study or analysis, no matter what other studies, datasets or

information sources are available”3

3 C. Dwork and Aaron Roth (2014), ”The Algorithmic Foundations of  Differential Privacy”, 2014
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The notion of  DP

• Does the protected answer disclose any information of  an individual?

 The absence or presence of  a single person’s information does not affect the outcome of  

the analysis
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Definitions and Parameters

• Definition 𝜀, 𝛿 - DP [Dwork and Roth 2014]: 

A randomized algorithm 𝑌 is 𝜀, 𝛿 - differentially private if  ∀𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑌) and 

for all neighboring datasets 𝑥 and 𝑥′ within the domain of  𝑌 the following inequality 

holds.

𝑃𝑟 𝑌 𝑥 ∈ 𝑆 ≤ 𝑃𝑟 𝑌 𝑥′ ∈ 𝑆 𝑒𝑥𝑝 𝜀 + 𝛿

𝑌 The mechanism: query(db) + noise or query(db+noise)

𝑥 and 𝑥′ Entries in neighboring databases

𝑆 All potential output of  𝑌 that could be predicted

𝜀 Max distance between a query on databases 𝑥 and 𝑥′

𝛿 Probability of  information accidentally being leaked
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Definitions and Parameters

• Worst-case privacy mesure

A randomized algorithm 𝑌 is 𝜀, 𝛿 - differentially private if  ∀𝑆 ⊆ 𝑅𝑎𝑛𝑔𝑒(𝑌) and 

for all neighboring datasets 𝑥 and 𝑥′ within the domain of  𝑌 the following inequality 

holds.

𝑃𝑟 𝑌 𝑥 ∈ 𝑆 ≤ 𝑃𝑟 𝑌 𝑥′ ∈ 𝑆 𝑒𝑥𝑝 𝜀 + 𝛿

• The adversary knows all the information but 1-entry!

• More (dp) noise lower utility       privacy-utility trade-off
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Definitions and Parameters

• 𝜀, 𝛿 -DP is also called approximate DP

• 𝜀, 𝛿 parameters are privacy loss

• The risk to one’s privacy caused by a DP algorithm is bounded by 𝜀, 𝛿
• Comparison between running a query 𝑌 over database 𝑥 and 𝑥′
• 𝜀, 𝛿 measures how much two probabilities of  random distributions of  𝑥 and 

𝑥′ can differ

 𝜀 Privacy budget/parameter 
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Definitions and Parameters

• Privacy budget 𝜀 ∶
1. A metric of  privacy loss at a differential change in data; 1 entry

2. Opposite relation with privacy

• 𝜀 small; higher privacy but less accurate responses

 the inputs of  the queries are very similar then the outputs will be very similar 

too.

• 𝜀 high ; lower privacy

 An output 𝑌 is very unlikely for databases 𝑥 and 𝑥′
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Definitions and Parameters

• Parameter 𝛿:

 If  𝛿 = 0, 𝑌is 𝜀-DP

𝑃𝑟 𝑌(𝑥) ∈ 𝑆

𝑃𝑟 𝑌(𝑥′) ∈ 𝑆
≤ 𝑒𝑥𝑝 𝜀

 If  𝛿 > 0, with probability 1 − 𝛿, we get the same guarantee of  𝜀 −DP.

 Common approach is to set 𝛿 ≤ the inverse of  any polynomial in the size

of  the database

 𝜀 is independent of  the database size

 For 𝛿, there is a higher chance of  privacy leak with the database size

• No surprise: DP works better on larger databases.

 The effect of  any single individual on a given aggregate statistic diminishes as 

the number of  individuals in a database grows
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Fundamentals – Randomized Response

• Randomized response (Warner, 1965) is the forerunner to DP

• DP enforces privacy through randomization

• Used in survey interviews to determine the proportion in a group with a certain 

characteristic

• Individuals required to answer to sensitive queries in confidence YES/NO

1st flip
heads

tails

Truth p=1/2

2nd flip
heads tails

NO p=1/4
YES p=1/4

This is an example where p=1/2

If I ask this question I

will not get truthful

responses. I tell everyone

to flip a coin!
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Fundamentals - DP

• How about DP?

• A dataset 𝐷 = 𝑋1, 𝑋2, … , 𝑋𝑖 , … , 𝑋𝑛 , for 𝑋𝑖 ∈ 𝒳 and 𝐷is in 𝒳𝑛and its neighbour 

𝐷′ = 𝑋1, 𝑋2, …𝑋𝑖
′, … , 𝑋𝑛 , we write 𝐷 ∼ 𝐷′

• We want to report Y = f 𝐷 , via some randomization, so 𝑌 ∼ 𝑄(. |𝑋1, 𝑋2, … , 𝑋𝑛)
• 𝑄 satisfies 𝜀-DP if  

𝑄(𝑌 ∈ 𝐴|𝐷) ≤ 𝑄 𝑌 ∈ 𝐴 𝐷′ 𝑒𝑥𝑝 𝜀 ,

for all 𝐴 and all pairs of 𝐷 ∼ 𝐷′.
• If 𝑄 has density 𝑞;

𝑠𝑢𝑝𝑦
𝑞(𝑦|𝐷)

𝑞(𝑦|𝐷′)
≤ 𝑒𝑥𝑝 𝜀

• What do you see here?
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Fundamentals - DP

• It means that whether or not you are in the database, this has little affect on the 

output 𝑌.
 I think you are person 𝑖 in the database, I want to know whether

𝑋𝑖 = 𝑎 or 𝑋𝑖 = 𝑏
 After I see 𝑌, my odds are

𝑃(𝑋𝑖 = 𝑎|𝑌)

𝑃(𝑋𝑖 = 𝑏|𝑌)
=
𝑝 𝑦|𝑋𝑖 = 𝑎 𝑃(𝑋𝑖 = 𝑎)

𝑝 𝑦|𝑋𝑖 = 𝑏 𝑃(𝑋𝑖 = 𝑏)

𝑒𝑥𝑝 −𝜀
𝑃(𝑋𝑖 = 𝑎)

𝑃(𝑋𝑖 = 𝑏)
≤
𝑃(𝑋𝑖 = 𝑎|𝑌)

𝑃(𝑋𝑖 = 𝑏|𝑌)
≤
𝑃(𝑋𝑖 = 𝑎)

𝑃(𝑋𝑖 = 𝑏)
𝑒𝑥𝑝 𝜀

 If 𝜀 is small, knowing 𝑌 does not change much since 𝑒𝑥𝑝 𝜀 ≈ 𝜀 + 1.
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Fundamentals – Local & Global Setting

• Local vs Global DP:  

Privacy barrier
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Fundamentals - Local & Global Setting

• Randomized response is a local mechanism, no need to a trusted server/curator

• How do they differ in the context of  DP?

1) Local DP: Applied on raw data at individual devices (or sensors)

Use case: RAPPOR in Google4, Apple iOs Private Count Mean Sketch

2) Global DP: Applied at the central server (e.g. query output)

Use Case: US Census Bureau

3)   Distributed DP: Halfway between the two; applied when data is distributed across 

servers (or devices)

4 Erlingsson et al. “RAPPOR: Randomized Aggregatable Privacy-Preserving Ordinal Response”, 2014
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Fundamentals - Local & Global Setting

Setting Pros Cons

Local Raw data never shared, better privacy

No need to a trusted curator

High values of  𝜀 or more data 

since total noise is high

Worse utility

Global Raw data shared

Requirement of  a trusted server

Less total noise

Better utility : Accuracy with low 

values of  𝜀
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Fundamentals – Laplace Mechanism

• Laplace Mechanism is defined for a function 𝑓:𝒟 → ℝ𝑑where 𝒟 is the domain of

the dataset 𝐷 and 𝑑 is the output dimension. Mechanism adds Laplace noise to the

output of 𝑓as

𝒜 𝐷 = 𝑓 𝐷 + 𝐿𝑎𝑝 0 𝑏 𝑑

• Laplace distribution with location and scale parameters

𝜇 and b:

𝐿𝑎𝑝 𝑥 𝑏 =
1

2𝑏
𝑒𝑥𝑝

|𝑥−𝜇|

𝑏

• Applies to any sort of numeric query



• How do we know how much noise to add?

 Sensitivity!

• Global sensitivity:  
Δ𝑓 = max

𝐷,𝐷′
‖f(D) − f(D′)‖1

• The smallest possible upper bound on the images of  a query when applied to 
neighbours.

• Opposite relationship with the privacy

• Higher sensitivity         a stronger requirement for a privacy guarantee 

• Consequently more noise is needed to achieve that guarantee

23

Fundamentals - Mechanism
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𝑏 =
Δ𝑓

𝜀
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Fundamentals – Laplace Mechanism
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Fundamentals – Laplace Mechanism

• Example: The sensitivity of  the mean and how it applies to Laplace mechanism

• Let us start with the sensitivity!

𝑓 𝑋 = ത𝑋 =
1

𝑛
෍

𝑖=1

𝑛

𝑋𝑖

• # of  participants is public information

• The curator collects the true answers YES/NO to compute ത𝑋
• Generates DP noise following N~𝐿𝑎𝑝(0, 𝑏) where 𝑏 = ∆𝑓/𝜀
• What is ∆𝑓 for the mean?

• Say 𝑛 = 6 ҧ𝑥 =
3

6
, ഥ𝑥′ =

2

6
,
4

6

• ∆𝑓 = max
𝑥,𝑥′

ҧ𝑥 − ҧ𝑥′ = 1/n

1

0

0

1

0

1

1

0

1

1

0

1

𝑥 𝑥′
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Fundamentals – Laplace Mechanism

• Example: How it applies to Laplace mechanism, 

is Laplace mechanism 𝜀 −DP?

𝑌 = ҧ𝑥 + 𝑁
𝑃𝑌(𝑦|𝑥)

𝑃𝑌(𝑦|𝑥
′)
=
𝑒𝑥𝑝 −𝑛𝜀| ҧ𝑥 − 𝑦|

𝑒𝑥𝑝 −𝑛𝜀|ഥ𝑥′ − 𝑦|

since ∆𝑓 = 1/𝑛

 Upper bound due to

ҧ𝑥 ഥ𝑥′

≤ 𝑒𝑥𝑝 −𝑛𝜀 ҧ𝑥 − 𝑦 − ҧ𝑥′ + 𝑦

= 𝑒𝑥𝑝 −𝜀

𝑎 − 𝑏 ≥ 𝑎 − 𝑏 ,

𝑎, 𝑏 ∈ ℜ
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Fundamentals – Laplace Mechanism

• Utility: Error in the form of  

Pr[|𝑌 − 𝑓 𝑋 | ≥ 𝛼] < 𝛽

• In case of  mean for Laplace mechanism, 𝑑 = 1with ∆𝑓 =
1

𝑛
.

• The output 𝑌 = 𝑓(𝑋) + 𝑁with N~𝐿𝑎𝑝(0,1/𝜀𝑛)
• The error  𝑌 − 𝑓(𝑋) is upper bounded by𝒪(1/𝜀𝑛) since due to linearity 

𝐸 𝑌 = 𝐸[𝑓 𝑋 ] and 𝑉𝑎𝑟 𝑌 = (1/𝜀2𝑛2)
• Plugging in Chebyshev gives

𝑌 − 𝑓(𝑋) < 𝒪(1/𝜀𝑛)

error accuracy

tolerance



• Gaussian Mechanism defined for a function 𝑓:𝒟→ℝ𝑑 where 𝒟 is the domain of  the 
dataset 𝐷 and 𝑑 is the output dimension. Mechanism adds Gaussian noise to the 
output of  𝑓as

𝒜(𝐷)=𝑓(𝐷)+𝑍𝑑

where 𝑍~𝑁(0, 𝜎2),  𝜎2 =
0.2 ln(

1.25

𝛿
) ∆𝑓2

𝜀2
.

• The Gaussian mechanism is (ε, δ)-DP5.

28

Fundamentals – Gaussian Mechanism
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5 C. Dwork and Aaron Roth (2014), ”The Algorithmic 

Foundations of  Differential Privacy”, 2014



• 𝑙2 − sensitivity: ∆𝑓2= max
𝐷,𝐷′

‖f(D) − f(D′)‖2

• Let us take the example of  mean in Gaussian mechanism 𝑓 𝑋 = ത𝑋 =
1

𝑛
σ𝑖=1
𝑛 𝑋𝑖 for

𝑋 ∈ 0,1 𝑑.

• 𝑙2 − sensitivity of  the mean: 
𝑑

𝑛
vs. 𝑙1 − sensitivity of  the mean 

𝑑

𝑛

• Maximum difference between neighbors is 
1

𝑛
𝟏.

Reminder: We had used 𝑙1 − sensitivity for Laplace mechanism.

𝑙1 and 𝑙2 − sensitivities are 𝑙1 and 𝑙2norm of  the max difference between neighbors.

29

Fundamentals – Gaussian Mechanism
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• Why 𝑙2 − sensitivity rather than 𝑙1 − sensitivity  for Gaussian mechanism?

 The error!

 Laplace mechanism is 𝜀 −DP with Laplace noise magnitude 𝑑/𝑛𝜀 and error 

𝒪(
𝑑3/2

𝑛𝜀
)

 Gaussian mechanism is 𝜀, 𝛿 −DP with Gaussian noise magnitude 𝒪(
𝑑 log(

1

𝛿
)

𝑛𝜀
)

to each coordinate and error 𝒪(𝑑/𝑛𝜀).

• the Gaussian mechanism can add a factor of  𝒪 𝑑 less noise with a weaker privacy 
guarantee!

• In multivariate cases, it may be a better choice than Laplace!

30

Fundamentals – Gaussian Mechanism
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• Composability of DP prevents accumulated privacy leakage over several independent
analyses6,7

 A set of mechanisms represented by different queries each individually satisfying
DP, also collectively satisfies DP

31

Properties - Composability
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6,7 Dwork et al. 2010 & Kairouz et al. 2015

Theorem: [Sequential Composition]

For 𝜀𝑗 -differentially private sequence of  mechanisms 𝑀 = (𝑀1, 𝑀2, … ,𝑀𝑚) defined 

over 𝒳𝑛 → 𝒴𝑚, which is run (over the same input data) independently, 

composability of  DP ensures that 𝑀 satisfies σ𝜀𝑗 −DP.
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Properties - Composability
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• Parallel Composition: An alternative to sequential composition - a second way to 

calculate a bound on the total privacy cost of  multiple data releases. 

• The idea is to split your data in chunks and to run DP on each chunk separately.

𝑀(𝑋) is 𝜀−DP with the input data 𝑋 is split into 𝑘 chunks s.t. 𝑥1 ∪ 𝑥2…∪ 𝑥𝑘 =
𝑋. The mechanisms 𝑀 𝑋1 , …𝑀 𝑋𝑘 are also 𝜀−DP.

Sequential-

σ𝜀𝑗-DP

Parallel-

max
𝑗

𝜀𝑗-DP



A. Ünsal, EURECOM 33Cyber in Occitanie

Post-processing Invariance

• Post-processing property of  DP holds, that is if  an algorithm is 𝜀, 𝛿 −DP then 

any post-processing is also 𝜀, 𝛿 −DP.

 It is safe to perform arbitrary computations on a differentially private output. 

No danger of  losing the privacy guarantee.
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DP meets ML

Model Training

Input Data

Output

User

Direct privacy leakage: 

Input data, training data
Indirect privacy leakage: 

model, training, output
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DP meets ML

• Privacy-Preserving Empirical Risk Minimization (ERM)

 ERM used to train ML models by minimizing a loss function over a dataset

 DP can be incorporated into ERM at different stages of  the ML life cycle

 Need a balance between privacy and model performance to guarantee DP with 

a useful model.

Local DP could be applied on 

the training data before the 

learning process begins.

Global DP could be applied to 

the final model parameters 

after training. 
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DP meets ML

• DP-SGD: Differentially private Stochastic Gradient Descent8

8 Abadi et al. Deep Learning with Differential Privacy2016

A key step in each private SGD update

is gradient clipping that shrinks the

gradient of an individual example

whenever its 𝑙2 norm exceeds some

threshold.

• SGD is an iterative optimization

method for unconstrained

optimization problems.

• Objective function with suitable

smoothness properties
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DP as a Defense Strategy

• Membership Inference Attacks9 (MIAs): indirect leakage from training 
data

Was this data sample part 

of  the training data ?

9 R. Shokri et al. “Membership Inference Attacks against machine learning models”, 2017.

This attack is foundational

privacy attack because it

gives a signal about if there is

some memorization or tgat

model contains some

information about the

training data
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DP as a Defense Strategy

• Adversary aims to infer whether a given data point was used to train the model

• Does the sensitive training set contain a target data point?



A. Ünsal, EURECOM 39Cyber in Occitanie

DP as a Defense Strategy

• Membership experiment10

10 Yeom et al. Privacy Risk in Machine Learning: Analyzing the Connection to Overfitting 2018
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DP as a Defense Strategy

Faces Dataset
Top-k Principal 

Components

(Eigenvectors)

Given        , is the sample    

part of  the faces dataset?

Differentially Private PCA11

Covariance 

Matrix Noise

Perturbed 

Covariance 

Matrix

11 Zari et al. Membership Inference Attacks against PCA, 2022

Input perturbation before computing 

the principal components
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DP as a Defense Strategy

• The adversary computes the reconstruction error of  the sample, which is the distance between the 

original sample and its projection into the eigenvectors

• Then compares this to a threshold 

• the sample was part of  the training, if  it is smaller than the threshold

• if  large, it was not part of  the training data

• Why the reconstruction error is a membership signal: Histogram!

• Samples that were used in PCA training tend to have a smaller reconstruction error than the ones that 

are not used.

• Explaination: PCA overfits the training data, this is why the attack is successful
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DP as a Defense Strategy

• Link Inference Attacks (LIAs) aim to infer the edges or the links of  the training 
graph

Are these two nodes connected in the graph?

Training Graph

Training 

Edge e

Graph Neural 

Network (GNN)
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DP as a Defense Strategy

• Link Inference Attacks (LIAs) in Twitch dataset (streaming platform)

• Each node represent a user

• The edges shows the relation

(follow/unfollow) which is private

in this case.

• The colors are labels

• G,D,E are positive

• Is F positive?
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DP as a Defense Strategy

Computational graph

Aggregated features of G and D instead of using only F’s features to generate the

prediction.

Aggregated features of

G and D instead of

using only F’s features to

generate the prediction.
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DP as a Defense Strategy
• LIA12

45

Query(F)

P

Connect(M, G)

Query(F)

P’
If  P - P’ > τ

F is Connected to G

12 Zari et al. Node Injecting Link Stealing Attack, 2024

Adversary’s knowledge: Adversary’s active capability:

Predictions P and P’. Ability to connect new nodes with target nodes

F and the target

G are connected

if changes of

predictions of

node F is greater

than a threshold
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DP as a Defense Strategy

46

Before Injection After Injection

• Injection of  M changes the computational graph of  the 

prediction of  node F

• The adversary needs to detect the predictions before and 

after the injection to infer whether F is connected to G
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DP as a Defense Strategy

• DP-Adjacency notions for Graphs13

• One-Node-One-Edge (1N1E) Level DP

Edge-level DP Node-level DP

12 Zari et al. Node Injecting Link Stealing Attack, ACSAC 2024

Indifferent to 

addition or deletion 

of  a single edge

Higher privacy/ 

degraded utility

A and A’ differ 

in 1 entry!
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DP as a Defense Strategy

• How LapGraph13 works:

Original Graph

Perturbed Graph

13 Fan Wuet al.. LINKTELLER: Recovering Private Edges from Graph Neural Networksvia Influence Analysis. 

2022

Actual number of  edges vs estimated number of  edges
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DP for Adversarial Classification

• Adversarial Classification under DP14:

Possible scenario for Local-DP and Global DP

14 Ünsal et al. A Statistical Threshold for Adversarial Classification in Laplace Mechanisms, 2021
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DP for Adversarial Classification

• Adversarial Classification under DP:

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝒙𝟏

𝒙𝟐

𝒙𝒏

𝒙𝒂

𝑥 𝑥′ • The noisy output 𝑌 = 𝑓 𝑋 + 𝑁 where 𝑁~𝐿𝑎𝑝(
𝑠

𝜀
)

• Adversary adds 𝑋𝑎

𝐻𝑜 =Defender fails to detect 𝑋𝑎
𝐻1 =Defender detects 𝑋𝑎
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DP for Adversarial Classification

where 𝜅 is some positive number to be determined.

• Probability of  false alarm
𝑃𝐹𝐴 = 𝛼 = Pr[𝐻0 𝑟𝑒𝑗𝑒𝑐𝑡|𝐴𝑡𝑡𝑎𝑐𝑘]

• Probability of  mis-detection
𝑃𝑀𝐷 = β = Pr[𝐻1 𝑟𝑒𝑗𝑒𝑐𝑡|𝑁𝑜 𝑎𝑡𝑡𝑎𝑐𝑘]

• The corresponding likelihood ratio

Λ =
ℒ(𝐿𝑎𝑝 𝜇1, 𝑏1 ; 𝑛)

ℒ(𝐿𝑎𝑝 𝜇0, 𝑏0 ; 𝑛)
≷ 𝜅
𝐻0

𝐻1
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DP for Adversarial Classification
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Theoretical Resources

• DifferentialPrivacy.org

• Harvard – Privacy Tools Project
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Resources

• Privacy Book

• Open DP
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Resources

• PyTorch Opacus

• Google DP Library
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Resources

• IBM DP Library   
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Thank you!

Any questions/Comments?

unsal@eurecom.fr

mailto:unsal@eurecom.fr

