

Introduction to Artificial Intelligence

Philippe Leleux LAAS-CNRS - Équipe TRUST

Summer school: Cyber in Font-RomeuJuly 7th 2025

Who am I? Philippe Leleux

- ➤ Associate professor at INSA de Toulouse, LAAS-CNRS, Equipe TRUST
- > Teaching: machine learning for critical embedded systems
- > Research:
 - How to make machine learning techniques more "trustworthy" ?
 => Application to medical diagnostic, pronostic, treatment decision
 - How to use machine learning for safety (including cybersecurity)?
 Detection of hardware trojans based on micro-architectural signals

AI What? Why? Where? When?

➤ When did the term artificial intelligence appear ?

- When did the term artificial intelligence appear?
 => 1956, Dartmouth College
- ➤ Who among you uses generative AI regularly?

- When did the term artificial intelligence appear?
 => 1956, Dartmouth College
- ➤ Who among you uses generative AI regularly?
- Who among you uses AI everyday?

- When did the term artificial intelligence appear ?
 => 1956, Dartmouth College
- ➤ Who among you uses generative AI regularly?
- Who among you uses AI everyday?
 => all
- ➤ Who has set up machine learning algorithms?

How many fingers?

- ➤ When did the term artificial intelligence appear ? => 1956, Dartmouth College
- ➤ Who among you uses generative AI regularly?
- Who among you uses AI everyday?
 => all
- ➤ Who has set up machine learning algorithms?
 - => scikit-learn, Tensorflow, Pytorch
 - => Typically neural networks

How many fingers ?

- \circ IA = program trying to imitate human logic (\sim 50s)
- \circ example: 4 legs + 1 sit + 1 back = chair

- \circ IA = program trying to imitate human logic (\sim 50s)
- Machine learning
 - data => model => answer
 - example: lots of chairs vs. lots of non-chair

- \circ IA = program trying to imitate human logic (\sim 50s)
- Machine learning
 - data => model => answer
 - workflow + set of algorithms
- Deep learning: neural networks
 - Inspired from the brain
 - example : facial recognition, ChatGPT, ...

Artificial neuron

- \circ IA = program trying to imitate human logic (\sim 50s)
- Machine learning
 - data => model => answer
 - workflow + set of algorithms
- o Deep learning: neural networks
 - Inspired from the brain
 - example : facial recognition, ChatGPT, ...
- ➤ What AI is **not**:
 - "Intelligent", "sentient", a "mystical entity"
 - A miracle solution to all problems
 - A danger for humanity
- ➤ Must you be an expert to use machine learning? Certainly not.

- ➤ Must you be an expert to use machine learning? Certainly not.
- Do you know affine functions?

- ➤ Must you be an expert to use machine learning? Certainly not.
- Do you know affine functions?
 - => Congrats, you now know how an artificial neuron works! (mostly)

Artificial neuron

Intelligence Artificielle

Machine Learning is a subset of Artificial Intelligence. The term Artificial Intelligence is often misused (buzzword in the sense of global intelligence).

Types of AI and Tasks

Intelligence Artificielle

Machine Learning is a subset of Artificial Intelligence. The term Artificial Intelligence is often misused (buzzword in the sense of global intelligence).

Intelligence Artificielle

Machine Learning is a subset of Artificial Intelligence. The term Artificial Intelligence is often misused (buzzword in the sense of global intelligence).

Types of AI and Tasks

Real-life examples Welcome to the AI era

Biology

Natural Language Processing

Real-life examples Welcome to the AI era

Biology Natural Language Processing learning | 2024 2023 Compute 4 / 27

Real-life examples Welcome to the AI era

Finance worker pays out \$25 million after video call with deepfake 'chief financial officer'

By Heather Chen and Kathleen Magramo, CNN
② 2 minute read - Dublish and Fig. 1 ② 2 minute read · Published 2:31 AM EST, Sun February 4, 2024

f X ≥ ∞

27/

Natural Language Processing

Real-life examples

Welcome to the AI era.

Finance worker pays out \$25 million after video call with deepfake 'chief financial officer'

By Heather Chen and Kathleen Magramo, CNN
(2) 2 minute read 10 in the control of ② 2 minute read · Published 2:31 AM EST, Sun February 4, 2024

f X ≥ ∞

Natural Language Processing

Viral scam: French woman duped by Al Brad Pitt love scheme faces cyberbullying

AI How?

AH Machine Learning How?

Machine learning Paradigm

11

Traditional approach

"Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed". Arthur Samuel (1959)

Machine learning Steps

Machine learning

Data preparation

What types of data?

How much of the whole development process is spent on data?

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

1. **Supervised learning:** from labelled inputs, train a model

=> e.g. classification : what number is 4? The patient has cancer?

14

 4
 1
 0

 7
 8
 1

 2
 7
 7

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

1. **Supervised learning:** from labelled inputs, train a model

=> e.g. classification : what number is 4 ?

The patient has cancer?

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

- 1. **Supervised learning:** from labelled inputs, train a model
 - => e.g. classification : what number is 4? The patient has cancer?
- 2. **Unsupervised learning:** from unlabelled inputs, find a structure
 - => e.g. clustering : group together

Group of patients => specific drug

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

- 1. **Supervised learning:** from labelled inputs, train a model
 - => e.g. classification : what number is 4? The patient has cancer?
- 2. <u>Unsupervised learning</u>: from unlabelled inputs, find a structure

=> e.g. clustering : group together

Group of patients => specific drug

Dataset MNIST:

https://www.kaggle.com/datasets/hojjatk/mnist-dataset

- 1. **Supervised learning:** from labelled inputs, train a model
 - => e.g. classification : what number is 4? The patient has cancer?
- 2. <u>Unsupervised learning</u>: from unlabelled inputs, find a structure
 - => e.g. clustering : group together 7; Group of patients => specific drug
- 3. **Reinforcement learning:** from environment and reward, train an agent

Supervised learning

07/07/2025

Supervised learning Task

16

Input : dataset with labels (given by experts)

Supervised learning Task

Goal : find f such that $\hat{y}_i = f(x) \approx y_i$ by minimizing an error/loss function For example: Mean Squared Error (MSE) :

$$\frac{1}{m}\sum_{i=1}^m(\hat{y}_i-y_i)^2$$

Supervised learning

Classical workflow

Supervised learning

Classical workflow

Deep learning

Neural networks biomimicry

Artificial neuron

Fruits classification

Labels

X

		^2
	2.5	5.5
ata	2.7	5.6
Ĕ	2.9	5.3
	3.1	5.2
	3.3	5.7

$\mathbf{x_2}$
4.5
4.2
4.7
4.4
4.1

Combining inputs

Labels

X

	^ 1	^2
	2.5	5.5
ata	2.7	5.6
ڎ	2.9	5.3
	3.1	5.2
	3.3	5.7

$\mathbf{x_2}$
4.5
4.2
4.7
4.4
4.1

Linear separation

Labels

	X ₁	X ₂
	2.5	5.5
ata	2.7	5.6
Ë	2.9	5.3
	3.1	5.2
	3.3	5.7

X ₁	X ₂
3.7	4.5
3.9	4.2
4.1	4.7
4.3	4.4
4.5	4.1

Affine separation: bias

Labels

	^ 1	^2
	2.5	5.5
ata	2.7	5.6
ä	2.9	5.3
	3.1	5.2
	3.3	5.7

X ₁	X ₂
3.7	4.5
3.9	4.2
4.1	4.7
4.3	4.4
4.5	4.1

Non-linear separations?

Labels

X ₁	X ₂
0.2	0.5
0.3	0.6
0.5	0.6
0.6	0.3
0.7	0.5
0.8	0.3
0.9	0.1

More complex but still linear

layers: input output

$$\begin{cases} a_1 = x_1 w_1 + x_2 w_2 + b_1 \\ a_2 = x_1 w_3 + x_2 w_4 + b_2 \\ a_3 = x_1 w_5 + x_2 w_6 + b_3 \end{cases}$$

Activation function: one step towards non-linearity

ex: sigmoid function

output

$$\begin{cases} a_1 = f(x_1W_1 + x_2W_2 + b_1) \\ a_2 = f(x_1W_3 + x_2W_4 + b_2) \\ a_3 = f(x_1W_5 + x_2W_6 + b_3) \end{cases}$$

layers: input

output

$$\begin{cases} a_1 = f(x_1W_1 + x_2W_2 + b_1) \\ a_2 = f(x_1W_3 + x_2W_4 + b_2) \\ a_3 = f(x_1W_5 + x_2W_6 + b_3) \end{cases}$$

How to set the parameters?

Automatic training

Iterative process:
updating neural network
weights

Accuracy = precision: Ratio of well-ranked points

Image classification

Labels

Forward propagation

Backward propagation

Convergence?

Neural networks Training

- We introduce the empirical loss over the entire dataset \mathcal{D} : $EmpLoss_{L,\mathcal{D}}(h_w) = \frac{1}{m} \sum_{(x,y) \in \mathcal{D}} L(y,h_w(x)).$
- For an example (x, y) and predictor h_w , we can use the loss functions :
 - $ightharpoonup L_1$ -loss : $L_1(y, \hat{y}) = |y h_w(x)|$,
 - L₂-loss : $L_2(y, \hat{y}) = (y h_w(x))^2$

To optimize the perceptron, we solve : $\hat{w}^* = \arg\min_{w} Loss(w)$.

⇒ using L2-loss :
Perceptron is equivalent to linear regression!

Supervised learning

Task

Algorithm Gradient descent algorithm

Dataset \mathcal{D} : inputs $X \to \text{outputs } y$ Initialize weights w_i while not converged do

Compute prediction $h_w(x)$ and loss Loss(w)

Update weights with step size α :

$$w \leftarrow w - \alpha \times \vec{\nabla} Loss(w)$$

$$ec{
abla} Loss(w) = egin{bmatrix} rac{\partial}{\partial w_0} Loss(w) \ rac{\partial}{\partial w_1} Loss(w) \ dots \ rac{\partial}{\partial w_m} Loss(w) \end{bmatrix}$$

Neural networks Perceptron

28

Given an **input** $x^T = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}$, we define a **perceptron** with the (synaptic) **weights** $w^T = \begin{bmatrix} w_1 & \cdots & w_n \end{bmatrix}$ and bias w_0 to compute the **output** $h_w(x)$ as

$$h_w(x) = g(w_0 + \sum_{i=1}^n w_i x_i)$$
 (1)

Hypothesis space : linear functions, Loss L2-loss (e.g.) Training : gradient descent updates $w \leftarrow w - \alpha \times \vec{\nabla} Loss(w)$

07/07/2025 Cyber in FRomeu - Intro AI

Neural networks From 1 neuron to a brain

Perceptron

Multilayer perceptron

Neural networks

From 1 neuron to a brain: the chain rule

Neural networks Full training

30

Network ← neural network with
initial weights
while not converged do

BACKPROP-ITER(E, Network)

Problem:

- slow, requires the derivatives
- gradient computation is costly and increases with
 - number of weight
 - number of examples

$$\implies O(|w| \times |E|)$$

Solution: (Stochastic/mini-batch gradient descent): select a small subset of example on which to propagate the error

```
Network \leftarrow neural network with initial weights 
 while not converged do 
 <math>MiniBatch \leftarrow sample(E, k) 
 Backprop-Iter(MiniBatch, Network)
```


Neural networks Convergence

Error on training set (blue) and test set (red)

Problem:

- training tend to overfit the data
- we cannot touch the test data

Solution:

- stop when performance decreases on the validation set,
- do not use validation set for training!

Neural networks In practice

Use existing libraries! Also contains all elements to develop new machine learning methods (used in research):


```
# Création du modèle de réseau de neurones
model = tf.keras.Sequential([
    tf.keras.layers.Dense(8, activation='relu', input_shape=(2,)),
    tf.keras.layers.Dense(8, activation='relu'),
    tf.keras.layers.Dense(2, activation='softmax')
])
# Compilation du modèle
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# Entraînement sur data avec labels
model.fit(data, labels, epochs=250, verbose=0)
# Prédiction sur data test
predicted_labels = model.predict(data_test)
```


A brief history of AI with deep learning

Convolutional Neural networks Image analysis

Is there a left turn in the following images?

$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Convolutional Neural networks Convolution Kernel

$$input = egin{bmatrix} x_1 & x_2 & x_3 \ x_4 & x_5 & x_6 \ x_7 & x_8 & x_9 \end{bmatrix}$$
 $kernel = egin{bmatrix} w_1 & w_2 & w_3 \ w_4 & w_5 & w_6 \ w_7 & w_8 & w_9 \end{bmatrix}$
 $f_w(x) = \sum w_i x_i$

$$\mathit{kernel} = egin{bmatrix} -1 & -1 & -1 \ -1 & 1 & 1 \ -1 & 1 & -1 \end{bmatrix}$$

$$f_{w}(\begin{bmatrix}0 & 0 & 0\\ 0 & 1 & 1\\ 0 & 1 & 0\end{bmatrix}) = 3 \quad f_{w}(\begin{bmatrix}0 & 0 & 0\\ 0 & 1 & 1\\ 0 & 1 & 1\end{bmatrix}) = 2 \quad f_{w}(\begin{bmatrix}0 & 1 & 0\\ 1 & 1 & 1\\ 0 & 1 & 0\end{bmatrix}) = 1 \quad f_{w}(\begin{bmatrix}0 & 0 & 0\\ 1 & 1 & 0\\ 0 & 1 & 0\end{bmatrix}) = 2$$

- When $f_w(x) = 3$ our kernel is able to detect a "right turn" in a 3x3 image. ⁴
- Our kernel is essentially a neural unit (perceptron).
- The weights could be learned

$$TL = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

$$BL = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \quad BR = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Convolutional Neural networks Scaling up to 4

Key idea: apply the convolutional unit to each 3x3 sub-images.

$$\begin{bmatrix} f_w(TL) & f_w(TR) \\ f_w(BL) & f_w(BR) \end{bmatrix} = \begin{bmatrix} 3 & -3 \\ -1 & -4 \end{bmatrix} = \begin{bmatrix} a_{17} & a_{18} \\ a_{19} & a_{20} \end{bmatrix}$$

Interpretation: there is a "right turn" in the top left corner, the rest is garbage.

Key insight:

- in this convolutional layer, we have 4 (2x2) output nodes
- each uses the same function, with the same weights
- ▶ the kernel is trained to detect a feature independently of its location in the source image

Convolutional Neural networks Combine with other types of kernels

 reduces dimensionality and variance

suppresses the noise

Convolutional Neural networks

Combine with other types of kernels

36

Convolutional Neural networks

Learns what to look at

We can interpret CNN w.r.t. representation learning:

- ightharpoonup the convolutional part is extractor of features/characteristics f(X),
- ightharpoonup the dense layers at the end play the role of our predictor h'.

Thus, deep learning allows to learn characteristics additionally to the predictor!

Some work left... See you on wednesday

Got time a demo?
Thank you for your attention

